Elements of Machine Learning

https://www.cs.duke.edu/courses/fall18/compsci371d/

Introduction and Logistics
Machine Learning Applications

- **Data Security**: Is this file malware?
- **Fraud Detection**: Is this transaction money laundering?
- **Personal Security**: What’s in your bag? Is that you?
- **Photo Collections**: Here are all photos of Jenny playing tennis
- **Financial Trading**: Is this trade likely to profit me?
- **Healthcare**: Does this scan have a tumor? Do these symptoms suggest diabetes?
- **Marketing Personalization**: What can I sell you? What movies do you like?
- **Online Search**: Why did/didn’t you like this search result?
- **Natural Language Processing**: Here is the information you need
- **Chatbots**: I can help you with your order. Tell me more about your symptoms
- **Speech Processing**: What did you say? Let me transfer your call
- **Smart Cars**: Are you comfortable? Are you alert? Stay in lane! Let me drive…
- …
Machine Learning in One Slide

• Identify a function $y = f(x)$:
 \[x = \text{email}, \quad y = \text{SPAM/NO SPAM} \]

• Give lots of examples (a training set):
 \[T = \{(x_1, y_1), \ldots, (x_N, y_N)\} \]

• A learner is another function λ:
 It takes T as input and outputs an approximation to f:
 \[h = \lambda(T) \]

• Hopefully, f and h behave about the same even for previously unseen data:
 \[h(x) \approx f(x) \]

• That’s the big problem!
Logistics
Emergency Procedures

- Know your **exits**

- **Stop me** if you see something dangerous I don’t see

- **Run** if you can (leave stuff behind, hands visible)

- **Hide** otherwise (lock yourself in if possible)

- **Fight** if you must, and if your life is in immediate danger

- [More details linked from the class web page announcements]
Academic Integrity

• *Short version: Cheating will be prosecuted*

• Cheating: Using someone else’s material in your work without giving credit [Lone exception: class materials need not be cited]

• Ditto for making materials available to others

• Giver/receiver are treated the same

• Format for using/making available is immaterial

• Only communication allowed during homework is with your group peers, if any, and with the teaching staff
371D

- **371D**: Remember the D when you look for web sites, etc.

- **371D**: “3” means “advanced undergraduate course”
 - Possibly more prerequisites
 - No drama with programming, installing, …
 - Includes picking up Python and Jupyter notebooks (but we’ll help)
Teaching Staff

- **Graduate TAs**: Elizabeth Margolin, Shuzhi Yu
- **Undergraduate TAs**: Shrey Gupta, Peter Hase, Oscar Li, Will Long, Alejandro Ortega, Jerry Pan, Alex Rubin, Faris Sbahi, Wilson Zhang

- If you like this course, please volunteer to TA next year!
- Each of us will have two office hours per week ⇒ 24 office hours per week. Times and venues TBA
- Four recitation sections per week
- We’ll keep listening to Piazza (at reasonable hours)
- **Talk to us!** We are here to help you learn
- Check the class *Contact Info* page
Recitation Sections

• An opportunity to dig deeper and clarify
• Ask questions
• Recitations are mandatory. We’ll take attendance
• Stick with your recitation section. Ask Elizabeth well ahead of time if you need to change for a serious reason

• **Recitations start after Labor Day.** First recitation on Tuesday, September 4
Notes

• There are many good books on machine learning (see class Resources page)

• There aren’t many books that support an undergraduate machine learning class well

• This is good but terse and theoretical: S. Shalev-Shwartz and S. Ben-David, *Understanding Machine Learning*, Cambridge, 2014. Optional reading

• **I’ll post notes on the class Syllabus web page as we go along.** They are required reading, and your main source of information

• All appendices are optional reading

• A status bar on the Syllabus page will show where we are

• Feel free to integrate with other sources. See Resources web page
Programming

- All programming will be in **Python 3** (not 2!)
- If you know how to program, picking up Python takes a few hours and Google while you program
- If you don’t know how to program, this class may not be for you
- You will write **Jupyter Notebooks** for homework. They are easy to get used to, and let you intersperse text, math, figures, and code
- A first homework assignment will help you ease into these tools
- The **Anaconda** distribution for everything you need is very strongly recommended
- See the **Resources** web page for tutorials on Python 3, Jupyter, Anaconda
Homework

• About one per week, due on Wednesdays
• Some math, some text, some programming
• OK to work in groups of one, two, three [but no division of labor!]
• One submission per group, remember to list all names!
• **No late homework allowed**
• Lowest assignment grade (including a 0) dropped
• Jupyter notebooks → HTML → PDF
• Two submissions on Gradescope: PDF, Notebook
Grades

- Midterm 25%, Final 25%, Homework 40%, Participation 10%
- Participation includes recitation attendance and engaging in lecture
- Lowest homework score is dropped