Introduction to Approximation Algorithms

Ron Parr
CPS 570

Covered Today

• Approximation in general
• Set cover
• A greedy algorithm for set cover
• Submodularity
• A generic, greedy algorithm exploiting submodularity
Some Intractable Combinatorial Optimization Problems

• Find the lowest cost traveling salesman tour

• Color a graph with the fewest possible colors

• Find the cover with the lower number of vertices/sets

Set Cover

• Input:
 – A set of atoms: $S=s_1...s_n$
 – A set of sets: $C=c_1...c_m$
 – Each set contains 1 or more atoms

• Optimization question: Can you choose k elements from C such that every element of S is in at least one of these k? (This is called a cover.)

• Decision question: Exist a cover of size k or less?
• NP-hard
Set Cover Example

14 atoms
5 sets

Hardness of Set Cover

• Karp showed that set cover is NP-complete (classic paper on reading list)

• Satisfiability reduces to clique
• Clique reduces to node (vertex) cover
 • Node cover reduces to set cover
Vertex Cover

- Input:
 - Graph $G=V,E$

- Optimization question: What is the smallest set of vertices such that every edge is incident upon one of the vertices
- Decision question: Does there exist a set of nodes of size k such that every edge is incident on one node in k

Reduce Node Cover to Set Cover

- Remember: Must solve node cover w/set cover
- For each edge in the node cover problem, we create an atom in the set cover problem
- For each node in the node cover problem, we create a set s.t. elements of the set correspond to edges incident to the node
- Observe that a set cover of size k exists iff a node cover of size k exists
Real Problems Abstracted by Set Cover

• Sensor placement:
 – You have sensors to place in m different locations
 – Each location can observe some fraction of your n targets
 – Find the most efficient sensor allocation to see all targets

• Buying bundles of goods
 – Different vendors offer package deals on different combinations of products (flat rate shipping)
 – Buy all the products you need in the smallest number of transactions

• Choosing advertising outlets
 – Different stations (or newspapers) cover different, possibly overlapping markets
 – Try to cover markets with smallest number of ads

• Choosing test cases for code/hardware
 – Different tests exercise different (overlapping) parts of the system
 – Try to very system in smallest number of tests

Why use approximation?

• Lots of problems we want to solve are NP-hard optimization problems, often with associated NP-complete decision problems

• Different notions of approximation
 – Search for a “pretty good” answer
 – Return an optimal answer in some cases (fail in others?)
 – Return an answer that is an additive factor from optimal: result = optimal +/− ε
 – Return an answer that a multiplicative factor from optimal: result/approximation = ε
 – For a given resource level, achieve a lower performance value?
 – For a given performance level, consume more resources?
So, what do we do?

• Settle for a larger k?
 – What if we don’t need the absolute smallest k?
 – Is there an algorithm that gives something close to the smallest?

• Settle for less than full coverage
 – What if we have only k resources?
 – Is there an algorithm that gives us something close to the best we can hope for using k?

Greedy Algorithms

• Greedy algorithms are a general class of algorithms that, loosely speaking, make a choice that gives maximal short term improvement, without considering subsequent choices

• Examples of greedy behavior:
 – Picking the class that is most interesting to you first (ignoring that this might cause scheduling problems with other classes)
 – Positioning a sensor so that it sees the highest number of targets (while ignoring subsequent choices)
Greedy Set Cover

• Repeat until done*
 – For each set not added, check how many previously uncovered atoms it would add
 – Add the set with the biggest increase in the number of atoms covered

• *What is “done”
 – Max of k elements added, or
 – All elements covered

What does greedy do here?
What price greed?

• Assume we have a budget of k

• Optimal picks: $O_1...O_k$, covering n atoms

• Greedy picks $G_1...G_k$, covering x atoms

• What is the relationship between x and n?

What price greed (2)?

• $o_i = \text{number of new elements covered by } O_i$
• $g_i = \text{number of new elements covered by } G_i$

• $n = o_1+o_2+...+o_k$
• $x = g_1+g_2+...+g_k$
What price greed (3)?

- Suppose $o_i > g_i$
- Q: Why didn’t greedy pick o_i?
- A: The only reason would be if greedy already covered $o_i - g_i$ of the elements in o_i in some g_j, $j < i$
- $x \geq (o_1 - g_1) + (o_2 - g_2) + \ldots + (o_k - g_k) = n - x$
- $2x \geq n$
- $x \geq n/2$

- Conclusion: For fixed k, greedy gets at least half as much coverage as optimal

What about minimizing k?

- Suppose optimal coverage uses k to cover n atoms
- Assume we run greedy until it covers everything, taking $h \geq k$ resources
- Analyze greedy’s h choices in batches of k
 - Greedy covers at least $n/2$ in first batch of k
 - Second batch of k covers at least half of remaining atoms. Why?
 - Same analysis can be repeated.

- Conclusion: greedy requires at most $k \log_2 n$ resources

- Note: Our bounds here are not tight. Better proof exploiting submodularity is possible.
Applying to Other Problems

• If we have a good approximation scheme for one NP-complete problem, does this imply a good approximation scheme for others?

• Depends upon what you mean by “good”...

• The polynomial factor can be a killer here

• Conclusion: Approximation algorithms will tend to be problem specific unless one discovers a more general approach to approximation

Submodularity

• f is a function defined on sets

• Submodular if:

\[X,Y \subseteq \Omega, X \subseteq Y : f(X \cup \{z\}) - f(X) \geq f(Y \cup \{z\}) - f(Y) \]

• Monotone if

\[X \subseteq Y : f(Y) \geq f(X) \]
Submodularity in English

• Adding to a subset has at least as much “bang” as adding to a superset, or
• Diminishing returns for adding to bigger sets

• Monotonicity in English: Bigger is better (though not strictly)

Set Cover?

• Does set cover fit this framework?
• $f =$ number of atoms covered
• Set $\Omega = C$

• Is it submodular?
• Is it monotone?
Maximizing Monotone Submodular Set Functions

- This is NP-hard in general 😞
- Greedy algorithm for maximizing monotone submodular set functions is a $1-1/e$ factor from optimal
- Can use similar argument to set cover to get a resource bound
- Proof in reading, similar to our 2X bound, but a little more subtle

- This provides a generic procedure for analyzing greedy algorithms for certain classes of hard problems 😊

Greedy Submodular Maximization

- Input: set of sets Ω, score function f
- $X = \{\}$
- Repeat until “done”
 - Find set ω in Ω that maximizes $f(X+\omega)$
 - Add ω to X

- “done”:
 - $|X| = k$, or
 - $F(X) = $ some target value
Greedy Set Cover and Submodularity

• Our greedy algorithm for set cover can be understood as an instance of the greedy approach for submodular set functions

• Conclusion: We get a tighter bound for free!
• \((1-1/e > \frac{1}{2})\)

Exploiting Submodularity

• Frequently used to justify greedy approaches that otherwise would have had computation/implementation ease as their only justification

• Impactful in, e.g., sensor network community
Conclusions

• Avoid worst consequences NP-hardness with clever approximation algorithms (or clever analysis of simple algorithms)

• Caveats:
 – Not all problems admit good approximate solutions
 – Approximation techniques for particular problems don’t always carry over to others

• Some generic approaches exist:
 – Greedy algorithms sometimes do well
 – Submodularity provides a generic framework for analyzing certain types of greedy algorithms
 – Other families of approaches exist as well – rounding, LP relaxations, etc.