CompSci 270
Informed Search

Ron Parr
Department of Computer Science
Duke University

With thanks to Vince Conitzer for some slides and figures and thanks to Kris Hauser for many slides

Example

For a uninformed strategy, N_1 and N_2 are just two nodes (at some position in the search tree)
Example

For a heuristic strategy counting the number of misplaced tiles, N_2 is more promising than N_1.

Heuristic Function

- The heuristic function $h(N) \geq 0$ estimates the cost to go from $\text{STATE}(N)$ to a goal state.
 - Value is independent of the current search tree; it depends only on $\text{STATE}(N)$ and the goal test GOAL.
- Example:
 - $h(N) = \text{number of misplaced numbered tiles} = 6$
 - [Why is it an estimate of the distance to the goal?]
Informed/Heuristic Search

- Idea: Give the search algorithm hints
- Heuristic function: $h(x)$
- $h(x) = \text{estimate of cost to goal from } x$
- If $h(x)$ is 100% accurate, then we can find the goal in $O(bd)$ time

- How do we use this?
Greedy Best First Search

- Expand node with lowest $h(x)$
- (Implement priority queue on h)
- Optimal if $h(x)$ is 100% correct
- How can we get into trouble with this?

What Price Greed?

What’s broken with greedy search?
Best-First ≠ Efficiency

Local-minimum problem

\[f(N) = h(N) = \text{straight distance to the goal} \]

A*

- Path cost so far: \(g(x) \)
- Total cost estimate: \(f(x) = g(x) + h(x) \)
- Maintain frontier as a priority queue (on \(f \))
- \(O(bd) \) time if \(h \) is 100% accurate
- We want \(h \) to be an admissible heuristic
- Admissible: never overestimates cost
- Why admissible?
 (guarantees optimality, completeness of A*)
8-Puzzle Heuristics

\[
\begin{array}{ccc}
5 & 8 & \text{STATE}(N) \\
4 & 2 & 1 \\
7 & 3 & 6
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & \text{Goal state}
\end{array}
\]

- \(h_1(N) = \) number of misplaced tiles = 6 is admissible

- \(h_2(N) = \) sum of the (Manhattan) distances of every tile to its goal position
 \[= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13\]
 is ???
8-Puzzle Heuristics

\[
\begin{array}{ccc}
5 & 8 \\
4 & 2 & 1 \\
7 & 3 & 6 \\
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 \\
\end{array}
\]

STATE(N)

- \(h_1(N) = \text{number of misplaced tiles} = 6 \) is admissible
- \(h_2(N) = \text{sum of the (Manhattan) distances of every tile to its goal position} \)
 \[= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 \]
 is admissible

Robot Navigation Heuristics

- Cost of one horizontal/vertical step = 1
- Cost of one diagonal step = \(\sqrt{2} \)

\[
h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2} \quad \text{is admissible}
\]
Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = $\sqrt{2}$

$h_2(N) = |x_N - x_g| + |y_N - y_g|$ is admissible if moving along diagonals is not allowed, and not admissible otherwise.
Robot Navigation

\[f(N) = h(N), \text{ with } h(N) = \text{Manhattan distance to the goal} \]
(not A*)
Robot Navigation

\[f(N) = h(N), \text{ with } h(N) = \text{Manhattan distance to the goal} \]
(not A*)

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Robot Navigation

\[f(N) = g(N)+h(N), \text{ with } h(N) = \text{Manhattan distance to goal} \]
(A*)

<table>
<thead>
<tr>
<th>8+3</th>
<th>7+4</th>
<th>6+3</th>
<th>5+6</th>
<th>4+7</th>
<th>3+8</th>
<th>2+9</th>
<th>3+10</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7+2</td>
<td>5+6</td>
<td>4+7</td>
<td>3+8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6+1</td>
<td></td>
<td>3</td>
<td>2+9</td>
<td>1+100+11</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7+0</td>
<td>6+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>8+1</td>
<td>7+2</td>
<td>6+3</td>
<td>5+4</td>
<td>4+5</td>
<td>3+6</td>
<td>2+7</td>
<td>3+8</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Some A* Properties

• Admissibility implies $h(x)=0$ if x is a goal state
• Above implies $f(x)=$cost to goal if x is a goal state and x is popped off the queue

• What if $h(x)=0$ for all x?
 – Is this admissible?
 – What does the algorithm do?

Result #1

A* is complete and optimal

[This result holds if nodes revisiting states are not discarded]
Proof (1/2)

• If a solution exists, A* terminates and returns a solution
 - For each node N on the frontier,
 \(f(N) = g(N) + h(N) \geq g(N) \geq d(N) \times \epsilon \),
 where \(d(N) \) is the depth of N in the tree

Proof (1/2)

• If a solution exists, A* terminates and returns a solution
 - For each node N on the frontier,
 \(f(N) = g(N) + h(N) \geq g(N) \geq d(N) \times \epsilon \),
 where \(d(N) \) is the depth of N in the tree
 - As long as A* hasn’t terminated, a node K on the frontier lies on a solution path
Proof (1/2)

• If a solution exists, A* terminates and returns a solution
 - For each node N on the frontier,
 \[f(N) = g(N) + h(N) \geq g(N) \geq d(N) \times \epsilon, \]
 where \(d(N) \) is the depth of N in the tree
 - As long as A* hasn’t terminated, a node K on the frontier lies on a solution path
 - Since each node expansion increases the length of one path, K will eventually be selected for expansion, unless a solution is found along another path

Proof (2/2)

• Whenever A* chooses to expand a goal node, the path to this node is optimal
 - \(C^* \): cost of the optimal solution path
 - \(G' \): non-optimal goal node in the frontier
 \[f(G') = g(G') + h(G') = g(G') > C^* \]
 - A node K in the frontier lies on an optimal path:
 \[f(K) = g(K) + h(K) \leq C^* \]
 - So, \(G' \) will not be selected for expansion
What to do with revisited states?

The heuristic h is clearly admissible.

If we discard this new node, then the search algorithm expands the goal node next and returns a non-optimal solution.
- Not harmful to discard a node revisiting a state if cost of the new path state is ≥ cost of previous path [so, in particular, one can discard a node if it re-visits a state already visited by one of its ancestors]

- A* remains optimal, but states may be re-visited multiple times [the size of the search tree can still be exponential in the number of visited states]

- Fortunately, for a large family of admissible heuristics – consistent heuristics – there is a much more efficient way to handle revisited states

Consistent Heuristic

- An admissible heuristic h is consistent (or monotone) if for each node N and each child N' of N: \(h(N) \leq c(N,N') + h(N') \)

\(\Rightarrow \) Intuition: a consistent heuristics becomes more precise as we get deeper in the search tree
Consistency Violation

If h tells that N is 100 units from the goal, then moving from N along an arc costing 10 units should not lead to a node N' that h estimates to be 10 units away from the goal.

Consistent Heuristic
(alternative definition)

- A heuristic h is consistent (or monotone) if
 1. for each node N and each child N' of N: $h(N) \leq c(N,N') + h(N')$
 2. for each goal node G: $h(G) = 0$

A consistent heuristic is also admissible
Admissibility and Consistency

• A consistent heuristic is also admissible

• An admissible heuristic may not be consistent, but many admissible heuristics are consistent

8-Puzzle

\[
\begin{array}{ccc}
5 & 8 \\
4 & 2 & 1 \\
7 & 3 & 6 \\
\end{array}
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 \\
\end{array}
\]

- \(h_1(N) \) = number of misplaced tiles
- \(h_2(N) \) = sum of the (Manhattan) distances of every tile to its goal position

are both consistent (why?)
Robot Navigation

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = $\sqrt{2}$

$h(N) \leq c(N,N') + h(N')$

$h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$ is consistent

$h_2(N) = |x_N - x_g| + |y_N - y_g|$ is consistent if moving along diagonals is not allowed, and not consistent otherwise

Result #2

- If h is consistent, then whenever A^* expands a node, it has already found an optimal path to this node’s state
Proof (1/2)

1. Consider a node N and its child N'. Since h is consistent: $h(N) \leq c(N,N')+h(N')$

 $$f(N) = g(N) + h(N) \leq g(N) + c(N,N') + h(N') = f(N')$$

 So, f is non-decreasing along any path.

Proof (2/2)

2. If a node K is selected for expansion, then any other node N in the frontier verifies $f(N) \geq f(K)$

 - If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K:
 $$f(N') \geq f(N) \geq f(K) \quad \text{and} \quad h(N') = h(K)$$

 So, $g(N') \geq g(K)$
2. If a node K is selected for expansion, then any other node N in the fringe verifies $f(N) \geq f(K)$.

If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K:

- $f(N') \geq f(N) \geq f(K)$ and $h(N') = h(K)$
- $g(N') \geq g(K)$

Result #2

If h is consistent, then whenever A^* expands a node, it has already found an optimal path to this node’s state.

Implication of Result #2

The path to N is the optimal path to S.

N_2 can be discarded.
Revisited States with Consistent Heuristic (Search#3)

- When a node is expanded, store its state into VISITED
- When a new node N is generated:
 - If STATE(N) is in CLOSED, discard N
 - If there exists a node N’ in the frontier such that STATE(N’) = STATE(N), discard the node N or N’ with the largest f (or, equivalently, g)

Heuristic Accuracy

- Let h_1 and h_2 be two consistent heuristics such that for all nodes N:
 \[h_1(N) \leq h_2(N) \]
- h_2 is said to be more **accurate** (or **more informed**) than h_1
 \[h_1(N) = \text{number of misplaced tiles} \]
 \[h_2(N) = \text{sum of distances of every tile to its goal position} \]
 \[h_2 \text{ is more accurate than } h_1 \]
Result #3

- Let h_2 be more accurate than h_1
- Let A_1^* be A^* using h_1 and A_2^* be A^* using h_2
- Whenever a solution exists, all the nodes expanded by A_2^*, except possibly for some nodes such that $f_1(N) = f_2(N) = C^*$ (cost of optimal solution) are also expanded by A_1^*

Proof

- $C^* =$ cost of optimal solution

- Every node N such that $f(N) < C^*$ is eventually expanded. No node N such that $f(N) > C^*$ is ever expanded

- Every node N such that $h(N) < C^* - g(N)$ is eventually expanded. So, every node N such that $h_1(N) < C^* - g(N)$ is expanded by A_2^*. Since $h_1(N) \leq h_2(N)$, N is also expanded by A_1^*

- If there are several nodes N such that $f_1(N) = f_2(N) = C^*$ (such nodes include the optimal goal nodes, if there exists a solution), A_1^* and A_2^* may or may not expand them in the same order (until one goal node is expanded)
How to create good heuristics?

- By solving relaxed problems at each node
- In the 8-puzzle, the sum of the distances of each tile to its goal position \(h_2\) corresponds to solving 8 simple problems:

 \[
 h_2(N) = \sum_{i=1}^{8} d_i(N)
 \]

- It ignores negative interactions among tiles

Can we do better?

- For example, we could consider two more complex relaxed problems:

 \[
 d_{1234} = \text{length of the shortest path to move tiles 1, 2, 3, and 4 to their goal positions, ignoring the other tiles}
 \]

- \(\Rightarrow h = d_{1234} + d_{5678} \) [disjoint pattern heuristic]
- How to compute \(d_{1234}\) and \(d_{5678}\)?
Can we do better?

• For example, we could consider two more complex relaxed problems:

\[d_{1234} = \text{length of the shortest path to move tiles 1, 2, 3, and 4 to their goal positions, ignoring the other tiles} \]

\[h = d_{1234} + d_{5678} \text{ [disjoint pattern heuristic]} \]

• Several order-of-magnitude speedups for the 15- and 24-puzzle (see R&N)

• These distances are pre-computed and stored
 [Each requires generating a tree of 3,024 nodes/states (breadth-first search)]

Effective Branching Factor

• Used as measure the effectiveness of \(h \)

• Let \(n \) be the total number of nodes expanded by A* for a particular problem and \(d \) the depth of the solution

• The effective branching factor \(b^* \) is defined by fitting: \(n = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d \)
Experimental Results
(see R&N for details)

• 8-puzzle with:
 – h_1 = number of misplaced tiles
 – h_2 = sum of distances of tiles to their goal positions
• Random generation of many problem instances
• Average effective branching factors (number of expanded nodes):

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>A_1^*</th>
<th>A_2^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>6</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>12</td>
<td>2.78 (3,644,035)</td>
<td>1.42 (227)</td>
<td>1.24 (73)</td>
</tr>
<tr>
<td>16</td>
<td>--</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>20</td>
<td>--</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>24</td>
<td>--</td>
<td>1.48 (39,135)</td>
<td>1.26 (1,641)</td>
</tr>
</tbody>
</table>

Iterative Deepening A* (IDA*)

• Idea: Reduce memory requirement of A* by applying cutoff on values of f
• Consistent heuristic function h
• Algorithm IDA*:
 – Initialize cutoff to f(initial-node)
 – Repeat:
 • Perform depth-first search by expanding all nodes N such that $f(N) \leq$ cutoff
 • Reset cutoff to smallest value f of non-expanded (leaf) nodes
Advantages/Drawbacks of IDA*

• Advantages:
 – Still complete and optimal
 – Requires less memory than A*
 – Avoid the overhead to sort the frontier

• Drawbacks:
 – Can’t avoid revisiting states not on the current path
 – Available memory is poorly used
 – Non-unit costs?

Memory-Bounded Search

• Proceed like A* until memory is full
 – No more nodes can be added to search tree
 – Drop node in frontier with highest \(f(N) \)
 – Place parent back in frontier with “backed-up”
 \(f(P) \leftarrow \min(f(P),f(N)) \)

• Extreme example: RBFS
 – Only keeps nodes in path to current node
Recap

- Heuristics change how we think about search
- A* is optimal, consistent
- Dramatic improvements in efficiency possible with good heuristics
- Many extensions possible, e.g., dealing with limited memory