Markov Decision Processes (MDPs)

Ron Parr
CompSci 270
Department of Computer Science
Duke University

With thanks to Kris Hauser for some slides

The Winding Path to RL

- Decision Theory
- Markov Decision Processes
- Reinforcement Learning
- Descriptive theory of optimal behavior
- Mathematical/Algorithmic realization of Decision Theory
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters
Covered Today

- Decision Theory Review
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration

Swept under the rug today

- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities
Playing a Game Show

• Assume series of questions
 – Increasing difficulty
 – Increasing payoff
• Choice:
 – Accept accumulated earnings and quit
 – Continue and risk losing everything
• “Who wants to be a millionaire?”

State Representation

Dollar amounts indicate the payoff for getting the question right

Probabilistic Transitions on Attempt to Answer

Start $100

1 correct $1,000

$0

2 correct $10K

$0

3 correct $50K

$0

$61,100

Downward green arrows indicate the choice to exit the game

N.B.: These exit transitions should actually correspond to states

Green indicates profit at exit from game
Making Optimal Decisions

- **Work backwards** from future to present

- Consider $50,000 question
 - Suppose $P(\text{correct}) = 1/10$
 - $V(\text{stop}) = $11,100
 - $V(\text{continue}) = 0.9*0 + 0.1*61.1K = 6.11K$

- Optimal decision stops

Working Backwards

- $V = 3,749$
- $V = 4,166$
- $V = 5,555$
- $V = 11.1K$

Red X indicates bad choice
Decision Theory Review

- Provides theory of optimal decisions
- Principle of maximizing utility
- Easy for small, tree structured spaces with
 - Known utilities
 - Known probabilities

Covered in Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
Dealing with Loops

Suppose you can pay $1000 (from any losing state) to play again

\[
\begin{align*}
V(s_0) &= 0.10(-1000 + V(s_0)) + 0.90V(s_1) \\
V(s_1) &= 0.25(-1000 + V(s_0)) + 0.75V(s_2) \\
V(s_2) &= 0.50(-1000 + V(s_0)) + 0.50V(s_3) \\
V(s_3) &= 0.90(-1000 + V(s_0)) + 0.10(61100)
\end{align*}
\]

From Policies to Linear Systems

• Suppose we always pay until we win.
• What is value of following this policy?

Return to Start Continue
And the solution is...

And the solution is...

$V = \$3,749$
\downarrow
$V = \$32.47K$

$V = \$4,166$
\downarrow
$V = \$32.58K$

$V = \$5,555$
\downarrow
$V = \$32.95K$

$V = \$11.11K$
\downarrow
$V = \$34.43K$

w/o cheat

9/10 \rightarrow 3/4 \rightarrow 1/2 \rightarrow 1/10

How do we find the optimal policy?

Is this optimal?

The MDP Framework

- State space: S
- Action space: A
- Transition function: P
- Reward function: $R(s,a,s')$ or $R(s,a)$ or $R(s)$
- Discount factor: γ
- Policy: $\pi(s) \rightarrow a$

Objective: Maximize expected, discounted return (decision theoretic optimal behavior)
Applications of MDPs

• AI/Computer Science
 – Robotic control (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 – Air Campaign Planning (Meuleau et al.)
 – Elevator Control (Barto & Crites)
 – Computation Scheduling (Zilberstein et al.)
 – Control and Automation (Moore et al.)
 – Spoken dialogue management (Singh et al.)
 – Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

• Economics/Operations Research
 – Fleet maintenance (Howard, Rust)
 – Road maintenance (Golabi et al.)
 – Packet Retransmission (Feinberg et al.)
 – Nuclear plant management (Rothwell & Rust)
 – Debt collection strategies (Abe et al.)
 – Data center management (DeepMind)
Applications of MDPs

• EE/Control
 – Missile defense (Bertsekas et al.)
 – Inventory management (Van Roy et al.)
 – Football play selection (Patek & Bertsekas)

• Agriculture
 – Herd management (Kristensen, Toft)

• Other
 – Sports strategies
 – Video games

The Markov Assumption

• Let S_t be a random variable for the state at time t

• $P(S_t | A_{t-1}S_{t-1},...,A_0S_0) = P(S_t | A_{t-1}S_{t-1})$

• Markov is special kind of conditional independence

• Future is independent of past given current state
Understanding Discounting

- Mathematical motivation
 - Keeps values bounded
 - What if I promise you $0.01 every day you visit me?

- Economic motivation
 - Discount comes from inflation
 - Promise of $1.00 in future is worth $0.99 today

- Probability of dying
 - Suppose ε probability of dying at each decision interval
 - Transition w/prob ε to state with value 0
 - Equivalent to $1 - \varepsilon$ discount factor

Discounting in Practice

- Often chosen unrealistically low
 - Faster convergence of the algorithms we’ll see later
 - Leads to slightly myopic policies

- Can reformulate most algs. for avg. reward
 - Mathematically uglier
 - Somewhat slower run time
Covered Today

• Decision Theory

• MDPs

• Algorithms for MDPs
 – Value Determination
 – Optimal Policy Selection
 • Value Iteration
 • Policy Iteration

Value Determination

Determine the value of each state under policy π

$$V^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' | s, \pi(s)) V^\pi(s')$$

Bellman Equation for a fixed policy π

$$V^\pi(s_1) = 1 + \gamma (0.4 V^\pi(s_2) + 0.6 V^\pi(s_3))$$
Matrix Form

\[
\mathbf{P}^\pi = \begin{pmatrix}
P(s_1 | s_1, \pi(s_1)) & P(s_2 | s_1, \pi(s_1)) & P(s_3 | s_1, \pi(s_1)) \\
P(s_1 | s_2, \pi(s_2)) & P(s_2 | s_2, \pi(s_2)) & P(s_3 | s_2, \pi(s_2)) \\
P(s_1 | s_3, \pi(s_3)) & P(s_2 | s_3, \pi(s_3)) & P(s_3 | s_3, \pi(s_3))
\end{pmatrix}
\]

\[
\mathbf{V}^\pi = \gamma \mathbf{P}^\pi \mathbf{V} + \mathbf{R}^\pi
\]

This is a generalization of the game show example from earlier.

How do we solve this system efficiently? Does it even have a solution?

Solving for Values

\[
\mathbf{V}^\pi = \gamma \mathbf{P}^\pi \mathbf{V}^\pi + \mathbf{R}^\pi
\]

For moderate numbers of states we can solve this system exactly:

\[
\mathbf{V}^\pi = (\mathbf{I} - \gamma \mathbf{P}^\pi)^{-1} \mathbf{R}^\pi
\]

Guaranteed invertible because \(\gamma \mathbf{P}^\pi\) has spectral radius < 1.
Iteratively Solving for Values

\[V^\pi = \gamma P^\pi V^\pi + R^\pi \]

For larger numbers of states we can solve this system indirectly:

\[V_{i+1}^\pi = \gamma P^\pi V_i^\pi + R^\pi \]

Guaranteed convergent because \(\gamma P^\pi \) has spectral radius <1

Establishing Convergence

- Eigenvalue analysis
- Monotonicity
 - Assume all values start pessimistic
 - One value must always increase
 - Can never overestimate
 - Easy to prove
- Contraction analysis...
Contraction Analysis

- Define maximum norm
 \[\| V \|_\infty = \max_i V[i] \]
- Consider two value functions \(V^a \) and \(V^b \) each at iteration 1:
 \[\| V^a_1 - V^b_1 \|_\infty = \epsilon \]
- WLOG say
 \[V^a_1 \leq V^b_1 + \epsilon \] (Vector of all \(\epsilon \)'s)

Contraction Analysis Contd.

- At next iteration for \(V^b \):
 \[V^b_2 = R + \gamma PV^b_1 \]
- For \(V^a \)
 \[V^a_2 = R + \gamma P(V^a_1) \leq R + \gamma P(V^b_1 + \epsilon) = R + \gamma PV^b_1 + \gamma \tilde{\epsilon} = R + \gamma PV^b_1 + \gamma \tilde{\epsilon} \]
- Conclude:
 \[\| V^a_2 - V^b_2 \|_\infty \leq \gamma \epsilon \]
Importance of Contraction

• Any two value functions get closer

• True value function V^* is a fixed point (value doesn’t change with iteration)

• Max norm distance from V^* decreases dramatically quickly with iterations

$$\|V_0 - V^*\|_\infty = \varepsilon \rightarrow \|V_n - V^*\|_\infty \leq \gamma^n \varepsilon$$

Covered Today

• Decision Theory

• MDPs

• Algorithms for MDPs
 – Value Determination
 – Optimal Policy Selection
 • Value Iteration
 • Policy Iteration
Finding Good Policies

Suppose an expert told you the “true value” of each state:

\[V(S1) = 10 \quad V(S2) = 5 \]

Action 1

\[
\begin{array}{c}
S1 \\
0.5 \\
S2 \\
0.5 \\
\end{array}
\]

Action 2

\[
\begin{array}{c}
S1 \\
0.7 \\
S2 \\
0.3 \\
\end{array}
\]

Improving Policies

- How do we get the optimal policy?
- If we knew the values under the optimal policy, then just take the optimal action in every state
- How do we define these values?
- Fixed point equation with choices (Bellman equation):

\[
V^*(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s' | s,a) V^*(s')
\]

Decision theoretic optimal choice given \(V^* \)
If we know \(V^* \), picking the optimal action is easy
If we know the optimal actions, computing \(V^* \) is easy
How do we compute both at the same time?
Value Iteration

We can’t solve the system directly with a max in the equation
Can we solve it by iteration?

\[V_{i+1}(s) = \max_a R(s, a) + \gamma \sum_{s'} P(s' | s, a) V_i(s') \]

• Called value iteration or simply successive approximation
• Same as value determination, but we can change actions

• Convergence:
 • Can’t do eigenvalue analysis (not linear)
 • Still monotonic
 • Still a contraction in max norm (exercise)
 • Converges quickly

Robot Navigation Example

- The robot (shown ▲) lives in a world described by a 4x3 grid of squares with square (2,2) occupied by an obstacle
- A state is defined by the square in which the robot is located: (1,1) in the above figure
 → 11 states
Action (Transition) Model

- In each state, the robot’s possible actions are {U, D, R, L}
- For each action:
 - With probability 0.8 the robot does the right thing (moves up, down, right, or left by one square)
 - With probability 0.1 it moves in a direction perpendicular to the intended one
 - If the robot can’t move, it stays in the same square

This model satisfies the Markov condition
Terminal States, Rewards, and Costs

- Two terminal states: (4,2) and (4,3)
- Rewards:
 - $R(4,3) = +1$ [The robot finds gold]
 - $R(4,2) = -1$ [The robot gets trapped in quicksand]
 - $R(s) = -0.04$ in all other states
- This example (from the textbook) assumes no discounting ($\gamma=1$
- Discussion: Is this a good modeling decision?

(Stationary) Policy

- A stationary policy is a complete map π: state \rightarrow action
- For each non-terminal state it recommends an action, independent of when and how the state is reached
- Under the Markov and infinite horizon assumptions, the optimal policy π^* is necessarily a stationary policy [The best action in a state does not depends on the past]
A stationary policy is a complete map $\pi: \text{state} \rightarrow \text{action}$

For each non-terminal state it recommends an action, independent of when and how the state is reached.

Under the Markov and infinite horizon assumptions, the optimal policy π^* is necessarily a stationary policy.

[The best action in a state does not depend on the past]

Finding π^* is called an observable Markov Decision Problem (MDP).

The optimal policy tries to avoid “dangerous” state (3,2).

Optimal Policies for Various R(s)

- **R(s) = -0.04**
 - The optimal policy avoids state (3,2) and recommendations for other states.

- **R(s) = -2**
 - The optimal policy recommends moving away from state (3,2).

- **R(s) = -0.01**
 - Similar to R(s) = -0.04, the policy avoids state (3,2).

- **R(s) > 0**
 - The optimal policy recommends moving towards state (3,2).
Bellman Equation

- If \(s \) is terminal:
 \[
 V(s) = R(s) + \sum_{a \in \text{App}(s)} \max_{s' \in \text{Succ}(s, a)} P(s'|s, a)V(s')
 \]

- If \(s \) is non-terminal:
 \[
 V(s) = R(s) + \max_{a \in \text{App}(s)} \sum_{s' \in \text{Succ}(s, a)} P(s'|s, a)V(s')
 \]

- The equations are non-linear

- \(\pi^*(s) = \arg \max_{a \in \text{App}(s)} \sum_{s' \in \text{Succ}(s, a)} P(s'|s, a)V(s') \)

Value Iteration Applied

1. Initialize the utility of each non-terminal states to \(V_0(s) = 0 \)
2. For \(t = 0, 1, 2, \ldots \) do
 \[
 V_{t+1}(s) = R(s) + \max_{a \in \text{App}(s)} \sum_{s' \in \text{Succ}(s, a)} P(s'|s, a)V_t(s')
 \]
 for each non-terminal state \(s \)
The utility of a state s is the maximal expected amount of reward that the robot will collect from s and future states by executing some action in each encountered state, until it reaches a terminal state (infinite horizon).

Under the Markov and infinite horizon assumptions, the utility of s is independent of when and how s is reached. [It only depends on the possible sequences of states after s, not on the possible sequences before s]

Convergence of Value Iteration

![Convergence of Value Iteration Diagram]
Properties of Value Iteration

- VI converges to V^* (||.||_\infty from V^* shrinks by γ factor each iteration)
- Converges to optimal policy
- Why? (Because we figure out V^*, optimal policy is argmax)
- Optimal policy is stationary (i.e. Markovian – depends only on current state)
- Why? (Because we are summing utilities. Thought experiment: Suppose you think it’s better to change actions the second time you visit a state. Why didn’t you just take the best action the first time?)

Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
Greedy Policy Construction

Let’s name the action that looks best WRT V:

$$\pi_v(s) = \arg\max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')$$

Expectation over next-state values

$$\pi_v = \text{greedy}(V)$$

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess $\pi_v = \pi_0$

$V_\pi = \text{value of acting on } \pi$

(solve linear system)

$\pi_v \leftarrow \text{greedy}(V_\pi)$

Repeat until policy doesn’t change

Guaranteed to find optimal policy
Usually takes very small number of iterations
Computing the value functions is the expensive part
Comparing VI and PI

- **VI**
 - Value changes at every step
 - Policy may change before exact value of policy is computed
 - Many cheap iterations
- **PI**
 - Alternates policy/value updates
 - Solves for value of each policy exactly
 - Fewer, slower iterations (need to invert matrix)
- **Convergence**
 - Both are contractions in max norm
 - PI is shockingly fast in practice

Computational Complexity

- VI and PI are both contraction mappings w/rate γ
 (we didn’t prove this for PI in class)
- VI costs less per iteration
- For n states, a actions PI tends to take $O(n)$ iterations in practice
 - Recent results indicate $\sim O(n^2a/1-\gamma)$ worst case
 - Interesting aside: Biggest insight into PI came ~ 50 years after the algorithm was introduced
A Unified View of Value Iteration and Policy Iteration

Notation

• Update for a fixed policy – definition of T^π operator:
 \[T^\pi V \equiv R^\pi + \gamma P^\pi V \]

• Update with policy improvement – definition of the T operator:
 \[TV(s) = \max_a r(s, a) + \gamma \sum_{s'} P(s'|s, a)V(s') \]
Value Determination

- For 0 steps \(V_0 = R^\pi \)

- For \(i \) steps \(V_i = T^\pi V_{i-1} = (T^\pi)_i R^\pi \)

- Infinite horizon \(\lim_{i \to \infty} V_i = (T^\pi)_\infty R^\pi = (1 - \gamma P^\pi)^{-1} R^\pi \)

Value Iteration

- For 0 steps \(V_0 = R \) (If \(R \) depends on \(a \), pick \(a \) with the highest immediate reward)

- For \(i \) steps \(V_i = T V_{i-1} = T_\infty R \)

- Infinite horizon \(\lim_{i \to \infty} V_i = T_\infty R = TV^* = V^* \)
Modified Policy Iteration

• Guess V_0 (usually just R), and π
• $i=1$
• Repeat until convergence*
 – For $j=1$ to n
 • $V_i = T^i V_{i-1}$
 • $i = i+1$
 – $\pi = \text{greedy}(V_{i-1})$

• Special cases: $n=1$ (VI), $n\to\infty$ (PI)

MDP Limitations → Reinforcement Learning

• MDP operate at the level of states
 – States = atomic events
 – We usually have exponentially (or infinitely) many of these
• We assume P and R are known

• Machine learning to the rescue!
 – Infer P and R (implicitly or explicitly from data)
 – Generalize from small number of states/policies