Section: Properties of Context-free Languages

Which of the following languages are CFL?

- \(L = \{ a^n b^n c^j \mid 0 < n \leq j \} \) **NOT CFL**
- \(L = \{ a^n b^j a^n b^j \mid n > 0, j > 0 \} \) **Not CFL**
- \(L = \{ a^n b^j a^k b^p \mid n + j \leq k + p, n > 0, j > 0, k > 0, p > 0 \} \) **CFL**
- \(L = \{ a^n b^j a^j b^n \mid n > 0, j > 0 \} \) **CFL**
Pumping Lemma for Regular Language’s: Let L be a regular language, Then there is a constant m such that $w \in L$, $|w| \geq m$, $w = xyz$ such that

- $|xy| \leq m$
- $|y| \geq 1$
- for all $i \geq 0$, $xy^iz \in L$
Pumping Lemma for CFL’s Let L be any infinite CFL. Then there is a constant m depending only on L, such that for every string w in L, with $|w| \geq m$, we may partition $w = uvxyz$ such that:

- $|vxy| \leq m$, (limit on size of substring)
- $|vy| \geq 1$, (v and y not both empty)

For all $i \geq 0$, $uv^ixy^iz \in L$

• Proof: (sketch) There is a CFG G s.t. $L = L(G)$.
Consider the parse tree of a long string in L.
For any long string, some nonterminal N must appear twice in the path.
Example: Consider
$L = \{a^n b^n c^n : n \geq 1\}$. Show L is not a CFL.

Proof: (by contradiction)

Assume L is a CFL and apply the pumping lemma.

Let m be the constant in the pumping lemma and consider
$w = a^m b^m c^m$. Note $|w| \geq m$.

Show there is no division of w into
$uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^i xy^i z \in L$ for $i = 0, 1, 2, \ldots$.
\[\omega = a^m b^n c^m \]

Case 1: \(V \) nor \(y \) distinct symbols

Case 2: \(v = a \)

Case 3: \(v = b \)

Case 4: \(v = c \)

\(y = a_t^{t_2} \)

\(y = b_t^{t_3} \)

\(u \) \(Vxyz \)
Thus, there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, $uv^i xy^i z$ is in L. Contradiction, thus, L is not a CFL. Q.E.D.
Example Why would we want to recognize a language of the type \(\{a^n b^n c^n : n \geq 1\} \)?
Example: Consider
\[L = \{a^n b^n c^p : p > n > 0\} \]. Show \(L \) is not a CFL.

Proof: Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider
\[w = \text{____________} \quad \text{Note } |w| \geq m. \]
Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m, \) and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Strategy → Choose a tight string to get contradiction easily!

\[w = a^m b^m c^{m+1} \]
\[|w| \geq m \]
Strategy → Choose a tight string to get contradiction easily.

\[\omega = a^m b^m c^{m+1} \]

Case 1: \(\nu \) nor \(\gamma \) distinct symbols
\[\Rightarrow \nu \) contains \(a's+b's \]
\[\Rightarrow u v^2 x y^2 z \notin L \]

Case 2: \(\nu \) is all a's

\[|\omega| \geq m \]
Example: Consider \(L = \{ a^j b^k : k = j^2 \} \). Show \(L \) is not a CFL.

- **Proof:** Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider

\[w = \text{___________} \]

Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m \), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Case 1: Neither \(v \) nor \(y \) can contain 2 or more distinct symbols. If \(v \) contains \(a \)'s and \(b \)'s, then \(uv^2 xy^2 z \notin L \) since there will be \(b \)'s before \(a \)'s.

Thus, \(v \) and \(y \) can be only \(a \)'s, and \(b \)'s (not mixed).
Example: Consider
$L = \{ w\bar{w}w : w \in \Sigma^* \}$, $\Sigma = \{a, b\}$, where \bar{w} is the string w with each occurrence of a replaced by b and each occurrence of b replaced by a. Show L is not a CFL.

• Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider
$w =$ ______________

Show there is no division of w into $uvwxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^ixy^iz \in L$ for $i = 0, 1, 2, \ldots$.
Example: Consider $L = \{a^n b^p b^p a^n\}$. L is a CFL. The pumping lemma should apply!

Let $m \geq 4$ be the constant in the pumping lemma. Consider $w = a^m b^m b^m a^m$.

We can break w into $uvxyz$, with:
Chap 8.2 Closure Properties of CFL’s

Theorem CFL’s are closed under union, concatenation, and star-closure.

- Proof:

 Given 2 CFG $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$

 - Union:

 Construct G_3 s.t. $L(G_3) = L(G_1) \cup L(G_2)$.
 $G_3 = (V_3, T_3, S_3, P_3)$
– Concatenation:
 Construct G_3 s.t. $L(G_3) = L(G_1) \circ L(G_2)$.
 $G_3 = (V_3, T_3, S_3, P_3)$

– Star-Closure
 Construct G_3 s.t. $L(G_3) = L(G_1)^*$
 $G_3 = (V_3, T_3, S_3, P_3)$
Theorem CFL’s are NOT closed under intersection and complementation.

• Proof:
 – Intersection:
– Complementation:
Theorem: CFL’s are closed under regular intersection. If L_1 is CFL and L_2 is regular, then $L_1 \cap L_2$ is CFL.

• Proof: (sketch) We take a NPDA for L_1 and a DFA for L_2 and construct a NPDA for $L_1 \cap L_2$.

$M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_0, z, F_1)$ is an NPDA such that $L(M_1) = L_1$.

$M_2 = (Q_2, \Sigma, \delta_2, q_0, F_2)$ is a DFA such that $L(M_2) = L_2$.

Example of replacing arcs (NOT a Proof!):
We must formally define \(\delta_3 \). If

then

Must show

if and only if
Questions about CFL:

1. Decide if CFL is empty?

2. Decide if CFL is infinite?
Example: Consider
\[L = \{ a^{2n} b^{2m} c^n d^m : n, m \geq 0 \} \]. Show \(L \) is not a CFL.

- Proof: Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider
\[w = a^{2m} b^{2m} c^m d^m \].

Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1\), \(|vxy| \leq m\), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Case 1: Neither \(v \) nor \(y \) can contain 2 or more distinct symbols. If \(v \) contains \(a \)'s and \(b \)'s, then \(uv^2 xy^2 z \notin L \) since there will be \(b \)'s before \(a \)'s.
Thus, \(v \) and \(y \) can be only \(a \)'s, \(b \)'s, \(c \)'s, or \(d \)'s (not mixed).

Case 2: \(v = a^{t_1} \), then \(y = a^{t_2} \) or \(b^{t_3} \) (\(|vxy| \leq m\))
If \(y = a^{t_2} \), then
$u v^2 x y^2 z = a^{2m+t_1+t_2} b^{2m} c^m d^m \notin L$ since $t_1 + t_2 > 0$, the number of a’s is not twice the number of c’s.

If $y = b^{t_3}$, then

$u v^2 x y^2 z = a^{2m+t_1} b^{2m+t_3} c^m d^m \notin L$ since $t_1 + t_3 > 0$, either the number of a’s (denoted $n(a)$) is not twice $n(c)$ or $n(b)$ is not twice $n(d)$.

Case 3: $v = b^{t_1}$, then $y = b^{t_2}$ or c^{t_3}

If $y = b^{t_2}$, then

$u v^2 x y^2 z = a^{2m} b^{2m+t_1+t_2} c^m d^m \notin L$ since $t_1 + t_2 > 0$, $n(b) > 2* n(d)$.

If $y = c^{t_3}$, then

$u v^2 x y^2 z = a^{2m} b^{2m+t_1} c^m + t_3 d^m \notin L$ since $t_1 + t_3 > 0$, either $n(b) > 2* n(d)$ or $2* n(c) > n(a)$.

Case 4: $v = c^{t_1}$, then $y = c^{t_2}$ or d^{t_3}

If $y = c^{t_2}$, then

$u v^2 x y^2 z = a^{2m} b^{2m} c^m + t_1 + t_2 d^m \notin L$ since $t_1 + t_2 > 0$, $2* n(c) > n(a)$.

If $y = d^{t_3}$, then
$uv^2xy^2z = a^{2m}b^{2m}c^m + t_1d^{m+t_3} \notin L$ since $t_1 + t_3 > 0$, either $2*n(c) > n(a)$ or $2*n(d) > n(b)$.

Case 5: $v = d^{t_1}$, then $y = d^{t_2}$

then $uv^2xy^2z = a^{2m}b^{2m}c^md^{m+t_1+t_2} \notin L$ since $t_1 + t_2 > 0$, $2*n(d) > n(c)$.

Thus, there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, uv^ixy^iz is in L. Contradiction, thus, L is not a CFL. Q.E.D.