Section: Transforming grammars
(Ch. 6)

Methods for Transforming Grammars

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol S_0,

$$S_0 \rightarrow S | \lambda$$
Theorem (Substitution) Let G be a CFG. Suppose G contains

$$A \rightarrow x_1Bx_2$$

where A and B are different variables, and B has the productions

$$B \rightarrow y_1 | y_2 | \ldots | y_n$$

Then can construct G' from G by deleting

$$A \rightarrow x_1Bx_2$$

from P and adding to it

$$A \rightarrow x_1y_1x_2 | x_1y_2x_2 | \ldots | x_1y_nx_2$$

Then, $L(G)=L(G')$.
Example: replace S rule

$S \rightarrow aBa$
$B \rightarrow aS \mid a$

becomes

\[
\begin{align*}
S &\rightarrow aaSa \\
S &\rightarrow aaa \\
B &\rightarrow aSa | a
\end{align*}
\]

Definition: A production of the form $A \rightarrow Ax$, $A \in V$, $x \in (V \cup T)^*$ is left recursive.
Example Previous expression grammar was left recursive.

\[
\begin{align*}
E & \rightarrow E + T \mid T \\
T & \rightarrow T \ast F \mid F \\
F & \rightarrow I \mid (E) \\
I & \rightarrow a \mid b
\end{align*}
\]

Derivation of \(a+b+a+a\) is:

\[
\begin{align*}
E & \Rightarrow E + T \Rightarrow E + T + T \Rightarrow E + T + T + T \\
& \Rightarrow^* a + T + T + T
\end{align*}
\]
Theorem (Removing Left recursion)
Let $G=(V,T,S,P)$ be a CFG. Divide productions for variable A into left-recursive and non left-recursive productions:

$$
A \rightarrow A \cdot x_1 \mid A \cdot x_2 \mid \ldots \mid A \cdot x_n \\
A \rightarrow y_1 \mid y_2 \mid \ldots \mid y_m
$$

where x_i, y_i are in $(V \cup T)^*$.

Then $G'=(V\cup\{Z\}, T, S, P')$ and P' replaces rules of form above by

$$
A \rightarrow y_i \cdot y_i Z, \ i=1,2,\ldots,m \\
Z \rightarrow x_i \cdot x_i Z, \ i=1,2,\ldots,n
$$
Example:

\[E \rightarrow E + T | T \] becomes \[E \rightarrow T | T_2 \]

\[T \rightarrow T \ast F | F \] becomes \[T \rightarrow F / F_y \]

Now, Derivation of \(a+b+a+a \) is:
Useless productions

S → aB | bA
A → aA
B → Sa
C → cBc | a

What can you say about this grammar?

C can't reach S
S, A, B can't get rid of variable

Theorem (useless productions) Let G be a CFG. Then ∃ G’ that does not contain any useless variables or productions s.t. L(G)=L(G’).
To Remove Useless Productions:
Let $G=(V,T,S,P)$.

I. Compute $V_1=\{\text{Variables that can derive strings of terminals}\}$

1. $V_1=\emptyset$

2. Repeat until no more variables added
 - For every $A \in V$ with $A \rightarrow x_1x_2 \ldots x_n$, $x_i \in (T^* \cup V_1)$, add A to V_1

3. $P_1 =$ all productions in P with symbols in $(V_1 \cup T)^*$

Then $G_1=(V_1,T,S,P_1)$ has no variables that can’t derive strings.
II. Draw Variable Dependency Graph

For $A \rightarrow xBy$, draw $A \rightarrow B$.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G' is s.t. $L(G)=L(G')$ and G' has no useless productions.
Example:

S → aB | bA
A → aA
B → Sa | b
C → cBc | a
D → bCb
E → Aa | b

V = \{B, C, E, D, S\}

G = S → aB
 B → Sa | b
Theorem (remove λ productions) Let G be a CFG with λ not in $L(G)$. Then \exists a CFG G' having no λ-productions s.t. $L(G) = L(G')$.

To Remove λ-productions

1. Let $V_n = \{ A \mid \exists$ production $A \rightarrow \lambda \}$
2. Repeat until no more additions
 - if $B \rightarrow A_1A_2\ldots A_m$ and $A_i \in V_n$ for all i, then put B in V_n
3. Construct G' with productions P' s.t.
 - If $A \rightarrow x_1x_2\ldots x_m \in P$, $m \geq 1$, then put all productions formed when x_j is replaced by λ (for all $x_j \in V_n$) s.t. $|\text{rhs}| \geq 1$ into P'.
Example:

\[S \rightarrow Ab \]
\[A \rightarrow BCB \mid Aa \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow cC \mid \lambda \]

\[V_n = \{ B, C, A \} \]

\[S \rightarrow Ab \mid b \]
\[A \rightarrow BCB \mid BC \mid CB \mid BB \mid B \mid Aa \mid a \]
\[B \rightarrow b \]
\[C \rightarrow cC \mid c \]
Definition Unit Production

\[A \rightarrow B \]

where \(A, B \in V \).

Consider removing unit productions:

Suppose we have

\[A \rightarrow B \quad \text{becomes} \quad A \Rightarrow a | ab \]

\[B \rightarrow a | ab \]

But what if we have

\[A \rightarrow B \quad \text{becomes} \quad A \Rightarrow C \]

\[B \rightarrow A \]

\[C \rightarrow B \]

\[\text{cycle} \]
Theorem (Remove unit productions)
Let $G = (V, T, S, P)$ be a CFG without λ-productions. Then \exists CFG $G' = (V', T', S, P')$ that does not have any unit-productions and $L(G) = L(G')$.

To Remove Unit Productions:

1. Find for each A, all B s.t. $A \Rightarrow B$ (Draw a dependency graph)
2. Construct $G' = (V', T', S, P')$ by
 (a) Put all non-unit productions in P'
 (b) For all $A \Rightarrow^* B$ s.t. $B \rightarrow y_1 | y_2 | \ldots y_n \in P'$, put $A \rightarrow y_1 | y_2 | \ldots y_n \in P'$
Example:

S → AB
A → B
B → C | Bb
C → A | c | Da
D → A
Theorem Let L be a CFL that does not contain λ. Then \exists a CFG for L that does not have any useless productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

\[A \to BC \text{ or } A \to a \]

where \(A, B, C \in V \) and \(a \in T \).

Theorem: Any CFG \(G \) with \(\lambda \) not in \(L(G) \) has an equivalent grammar in CNF.

Proof:

1. Remove \(\lambda \)-productions, unit productions, and useless productions.

2. For every rhs of length \(> 1 \), replace each terminal \(x_i \) by a new variable \(C_j \) and add the production \(C_j \to x_i \).

3. Replace every rhs of length \(> 2 \) by a series of productions, each with rhs of length 2. QED.
Example:

\[S \rightarrow CBcd \]
\[B \rightarrow b \]
\[C \rightarrow Cc \mid e \]

\[S \rightarrow CBC_{1}\]
\[C_{1} \rightarrow c \]
\[C_{2} \rightarrow d \]
\[C \rightarrow CC_{3} \]
\[C_{3} \rightarrow C \]

\[S \rightarrow CZ_{1} \]
\[Z_{1} \rightarrow BZ_{2} \]
\[Z_{2} \rightarrow C_{1}C_{2} \]
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

\[A \rightarrow ax \]

where \(a \in T \) and \(x \in V^* \)

Theorem: For every CFG \(G \) with \(\lambda \) not in \(L(G) \), \(\exists \) a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables \(A_1, A_2, \ldots A_n \)
3. Eliminate left recursion and use substitution to get all productions into the form:

\[
A_i \rightarrow A_j x_j, \ j > i
\]
\[
Z_i \rightarrow A_j x_j, \ j \leq n
\]
\[
A_i \rightarrow ax_i
\]

where \(a \in T\), \(x_i \in V^*\), and \(Z_i\) are new variables introduced for left recursion.

4. All productions with \(A_n\) are in the correct form, \(A_n \rightarrow ax_n\). Use these productions as substitutions to get \(A_{n-1}\) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3}\), etc until all productions are in the correct form.