Section: Turing Machines - Building Blocks

1. Given Turing Machines M1 and M2
Notation for

- Run M1
- Run M2

\[\rightarrow M1 \rightarrow M2 \]

\[S \rightarrow S' \]
\[H \rightarrow H' \]

\[z;R \rightarrow z;L \]

\[z \text{ represents any symbol in } \]

\[\square \]
2. Given Turing Machines M1 and M2

M1

M2

\[\rightarrow M1 \xrightarrow{x} M2 \]

\[\rightarrow S \quad H \quad \rightarrow S' \quad H' \]

\[\rightarrow S \quad H \quad \rightarrow x; z; R \quad \rightarrow z; z; L \]

z represents any symbol in
x is an element of
3. Given Turing Machines M1, M2, and M3

- M1
 - S
 - H

- M2
 - S'
 - H'

- M3
 - S''
 - H''

- x is an element of S
- y is any element except x from H
- z is any element from S'
More Notation for Simplifying Turing Machines

Suppose $\Gamma = \{a, b, c, B\}$

z is any symbol in Γ

x is a specific symbol from Γ

1. s - start
2. R - move right
3. L - move left
4. x - write x (and don’t move)
5. R_a - move right until you see an a
6. L_a - move left until you see an a

7. R_a - move right until you see anything that is not an a

8. L_a - move left until you see anything that is not an a

9. h - halt in a final state

10. $\{a, b\} \rightarrow w$

 If the current symbol is a or b, let w represent the current symbol.
Example

Assume input string $w \in \Sigma^+, \Sigma = \{a, b\}$. If $|w|$ is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.

input: bab, output: babb

input: ba, output: ba

What is the running time?

$|w| = n$
Example

Assume input string $w \in \Sigma^+, \Sigma = \{a, b\}$, $|w| > 0$

For each a in the string, append a b to the end of the string.

input: abbabb, output: abbabbbb

The tape head should finish pointing at the leftmost symbol of w.
Turing’s Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An algorithm for a function $f:D \rightarrow R$ is a TM M, which given input $d \in D$, halts with answer $f(d) \in R$.

Example: $f(x + y) = x + y$, x and y unary numbers.

\[
\begin{align*}
\text{start with:} & \quad 111 + 1111 \\
\text{end with:} & \quad 1111111
\end{align*}
\]
Example: Copy a String, \(f(w) = w0w \), \(w \in \Sigma^* \), \(\Sigma = \{a, b, c\} \)

Denoted by \(C \)

\[
\begin{align*}
\text{start with:} & \quad \text{abac} \\
\uparrow & \\
\text{end with:} & \quad \text{abac0abac} \\
\uparrow & \\
\end{align*}
\]

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol
Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right).

Below, “ba” is to the left of the tape head, so shift “ba” to the right.

start with: $\underline{aaBbaba}c_\text{a}$

end with: $\underline{aaBBbaca}$

\[\text{In part you are shifting } l_w = n \]

\[\Theta(n) \]
Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position
Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

start with: babcaBba

end with: bacaBBba

(similar to S_R)
Example: Add unary numbers
This time use shift.

Example: Multiply two unary numbers, \(f(x \cdot y) = x \cdot y \), \(x \) and \(y \) unary numbers. Assume \(x,y > 0 \).

\[
\begin{align*}
\text{start with:} & \quad 1111 \times 11 \\
& \quad \uparrow \\
\text{end with:} & \quad 11111111 \\
& \quad \uparrow
\end{align*}
\]