Section: Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Consider the CFG G:

\[
S \rightarrow Aa \\
A \rightarrow AA \mid ABa \mid \lambda \\
B \rightarrow BBa \mid b \mid \lambda
\]

Is ba in $L(G)$? Running time?

New grammar G' is:

\[
S \rightarrow Aa \mid a \\
A \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B \rightarrow BBa \mid Ba \mid a \mid b
\]

Is ba in $L(G)$? Running time?
Top-down Parser:

- Start with S and try to derive the string. \(aab \)

\[
S \rightarrow aS \mid b
\]

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

Examples: Shift-reduce, Operator-Precedence, LR Parser
The function \textsc{FIRST}:

\[
G = (V, T, S, P) \\
w, v \in (V \cup T)^* \\
a \in T \\
X, A, B \in V \\
X_I \in (V \cup T)^+
\]

Definition: \textsc{FIRST}(w) = the set of terminals that begin strings derived from w.

If \(w \Rightarrow^* av \) then
\(a \) is in \textsc{FIRST}(w)

If \(w \Rightarrow^* \lambda \) then
\(\lambda \) is in \textsc{FIRST}(w)
To compute FIRST:

1. FIRST(a) = \{a\}

2. FIRST(X)

 (a) If $X \rightarrow aw$ then
 a is in FIRST(X)

 (b) IF $X \rightarrow \lambda$ then
 λ is in FIRST(X)

 (c) If $X \rightarrow Aw$ and $\lambda \in$ FIRST(A) then
 Everything in FIRST(w) is in FIRST(X)
3. In general, $\text{FIRST}(X_1X_2X_3..X_K) =$

- $\text{FIRST}(X_1)$
- $\bigcup \text{FIRST}(X_2)$ if λ is in $\text{FIRST}(X_1)$
 - $\bigcup \text{FIRST}(X_3)$ if λ is in $\text{FIRST}(X_1)$ and λ is in $\text{FIRST}(X_2)$
 - ...$\bigcup \text{FIRST}(X_K)$ if λ is in $\text{FIRST}(X_1)$ and λ is in $\text{FIRST}(X_2)$
 - ... and λ is in $\text{FIRST}(X_{K-1})$
- $\{-\lambda\}$ if $\lambda \notin \text{FIRST}(X_J)$ for all J
Example:

\[
S \rightarrow aSc \mid B \\
B \rightarrow b \mid \lambda
\]

FIRST(B) = \{b, \lambda\}
FIRST(S) = \{a, b, \lambda\}
FIRST(Sc) = \{a, b, c\}
Example

\[S \rightarrow BCD \mid aD \]
\[A \rightarrow CEB \mid aA \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow dB \mid \lambda \]
\[D \rightarrow cA \mid \lambda \]
\[E \rightarrow e \mid fE \]

FIRST(S) = \{a, b, c, d, e, f\}
FIRST(A) = \{a, d, e, f\}
FIRST(B) = \{a, b, d, f\}
FIRST(C) = \{a, d, f\}
FIRST(D) = \{a, e, f\}
FIRST(E) = \{a, e, f\}
Definition: \(\text{FOLLOW}(X) = \) set of terminals that can appear to the right of \(X \) in some derivation.

\[
\text{If } S \xrightarrow{*} wAav \text{ then } \; \; \; \; \; \; a \text{ is in FOLLOW}(A)
\]

To compute FOLLOW:

1. \$ is in FOLLOW(S)
2. If \(A \rightarrow wBv \) and \(v \neq \lambda \) then
 \(\text{FIRST}(v) - \{\lambda\} \) is in FOLLOW(B)
3. IF \(A \rightarrow wB \) OR
 \(A \rightarrow wBv \) and \(\lambda \) is in FIRST(v) then
 FOLLOW(A) is in FOLLOW(B)
4. \(\lambda \) is never in FOLLOW
Example:

\[
S \rightarrow \text{aSc} \mid \text{B} \\
B \rightarrow \text{b} \mid \lambda
\]

\[
\text{FOLLOW}(S) = \{c, \$, 3\} \\
\text{FOLLOW}(B) = \{c, \$, 3\}
\]

\[
S \rightarrow \text{aSc} \rightarrow \text{aBc} \rightarrow \text{ac} \\
S \rightarrow \text{B$} \rightarrow \$
\]
Example:

\[S \rightarrow BCD \mid aD \]
\[A \rightarrow CEB \mid aA \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow dB \mid \lambda \]
\[D \rightarrow cA \mid \lambda \]
\[E \rightarrow e \mid fE \]

FOLLOW(S) =

\[\{\$\} \]

FOLLOW(A) =

\[\{\$\} \]

FOLLOW(B) =

\[\{d, c, \$, e, f, z\} \]

FOLLOW(C) =

\[\{e, f, c, \$\} \]

FOLLOW(D) =

\[\{\$\} \]

FOLLOW(E) =

\[\{b, \$\} \text{ and FOLLOW}(A) \]