Section: Finite Automata

Deterministic Finite Accepter (or Automata)

A DFA = (Q, Σ, δ, q₀, F)

where

Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.
δ: Q × Σ → Q
Example: DFA that accepts even binary numbers.

Transition Diagram:

\[M = (Q, \Sigma, \delta, q_0, F) = (E, q_1, 0, 1, 0, 0, 0, 0, 0, 0) \]

Tabular Format

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td>q5</td>
</tr>
<tr>
<td>q1</td>
<td>q1</td>
<td>q0</td>
</tr>
</tbody>
</table>

Example of a move: \(\delta(q_0, 1) = q_0 \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q,s)
 s = next symbol to the right on tape
if q ∈ F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1) 1 0 0
 q0
 q1

2) 1 0 0
 q0
 q1

3) 1 0 0
 q0
 q1

4) 1 0 0
 q0
 q1
Definition:

\[\delta^*(q, \lambda) = q \]

\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition The language accepted by a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally,

\[L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \} \]
Trap State

Example: \(L(M) = \{ b^n a^k \mid k > 0 \} \)
Example: \[\Sigma \overset{3}{=} \{ \text{a, b} \} \]

\[L = \{ w \in \Sigma^* \mid \text{w has an even number of a’s and an even number of b’s} \} \]
Example: DFA that accepts even binary numbers that have an even number of 1’s.
Definition A language is regular iff there exists DFA M s.t. \(L = L(M) \).
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA = (Q, Σ, δ, q₀, F)

where

Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.

δ: Q × (Σ ∪ {λ}) → 2^Q
Example

Note: In this example $\delta(q_0, a) = \{q_1, q_2\}$

$L = \{ \text{aa} \{ a \}^n \text{bb} \}^{n \geq 0}$
Example

\[\Sigma = \{a, b\} \]

\[L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\} \]
Definition $q_j \in \delta^*(q_i, w)$ if and only if there is a walk from q_i to q_j labeled w.

Example From previous example:

$\delta^*(q_0, ab) = \{q_3, q_0, q_1, q_3\}$

$\delta^*(q_0, aba) = \{q_2, q_3\}$

Definition: For an NFA M,

$L(M) = \{w \in \Sigma^* | \delta^*(q_0, w) \cap F \neq \emptyset\}$
2.3 NFA vs. DFA: Which is more powerful?

Example:
Theorem Given an NFA $M_N=(Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D=(Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

$Q_D = \underbrace{Q_N \times \cdots \times Q_N}_n$

$F_D = \{ Q \in Q_D \mid \exists q_i \in F_N \text{ with } q_i \in Q \}$

$\delta_D : Q_D \times \Sigma \rightarrow Q_D$
Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge

 (a) Choose a state $A = \{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$

 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$

 (c) Add state B if it doesn’t exist

 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Example:
Properties and Proving - Problem 1

Consider the property Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).

Example 1: Consider \(L = \{aaab, bbba\} \)

\[R1awb(L) = \{ bbab, abbb, baab, \ldots \} \]

Example 2: Consider \(\Sigma = \{a, b\} \), \(L = \{ w \in \Sigma^* \mid w \) has an even number of a’s and an even number of b’s\}

\[R1awb(L) = \{ w \in \Sigma^* \mid w \) has odd no. of a’s \}

Proof:
Properties and Proving - Problem 2

Consider the property
\texttt{Truncate_all_preceeding_b’s or TruncPreb} for short. If \(L \) is a regular, prove \(\text{TruncPreb}(L) \) is regular.

The property \(\text{TruncPreb} \) applied to a language \(L \) removes all preceding b’s in each string. If a string does not have an preceding b, then the string is the same in \(\text{TruncPreb}(L) \).

\textbf{Example 1:} Consider \(L = \{ \text{aaab, bbba} \} \)
\[
\text{TruncPreb}(L) = \{ \text{aa}^2 \}
\]

\textbf{Example 2:} Consider \(L = \{ (bba)^n \mid n > 0 \} \)
\[
\text{TruncPreb}(L) = \{ \text{a} \}(bba)^{n-1} \mid n \geq 2
\]

\textbf{Proof:}
Minimizing Number of states in DFA

Why?

Algorithm

• Identify states that are indistinguishable

These states form a new state

Definition Two states \(p \) and \(q \) are indistinguishable if for all \(w \in \Sigma^* \)

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
\]

Definition Two states \(p \) and \(q \) are distinguishable if \(\exists \ w \in \Sigma^* \) s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR} \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example: