Section: Finite Automata

Deterministic Finite Accepter (or Automata)

A DFA = $\langle Q, \Sigma, \delta, q_0, F \rangle$

where

Q is finite set of states
Σ is tape (input) alphabet
q_0 is initial state
$F \subseteq Q$ is set of final states.
$\delta : Q \times \Sigma \rightarrow Q$
Example: DFA that accepts even binary numbers.

Transition Diagram:

\[
M = (Q, \Sigma, \delta, q_0, F) = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_0\})
\]

Tabular Format

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td>q0</td>
</tr>
<tr>
<td>q1</td>
<td>q1</td>
<td>q0</td>
</tr>
</tbody>
</table>

Example of a move: \(\delta(q_0, 1) = q_0\)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q,s)
 s = next symbol to the right on tape
if q∈F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1)

2)

3)

4)

q0
q1
Definition:

\[\delta^*(q, \lambda) = q \]

\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition The language accepted by a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally,

\[L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \} \]
Trap State

Example: $L(M) = \{ab^k a \mid k > 0\}$
Example: \(L = \{w \in \Sigma^* \mid w \text{ has an even number of } a\text{'s and an even number of } b\text{'s}\} \)
Example: DFA that accepts even binary numbers that have an even number of 1’s.
Definition A language is regular iff there exists DFA M s.t. $L = L(M)$.
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA = $(Q, \Sigma, \delta, q_0, F)$

where

- Q is finite set of states
- Σ is tape (input) alphabet
- q_0 is initial state
- $F \subseteq Q$ is set of final states.

$\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q$
Example

Note: In this example $\delta(q_0, a) = \{q_1, q_2\}$

$L = \{aa^n b^n \mid n \geq 0\}$
Example

$\Sigma = \{a, b\}$

$L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\}$
Definition: Let \(q_j \in \delta^*(q_i, w) \) if and only if there is a walk from \(q_i \) to \(q_j \) labeled \(w \).

Example: From previous example:

\[
\delta^*(q_0, ab) = q_3, q_6, \overline{q_1}
\]

\[
\delta^*(q_0, aba) = \overline{q_3}, q_2, \overline{q_3}
\]

Definition: For an NFA \(M \),

\[
L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \}
\]
2.3 NFA vs. DFA: Which is more powerful?

Example:
Theorem Given an NFA \(M_N = (Q_N, \Sigma, \delta_N, q_0, F_N) \), then there exists a DFA \(M_D = (Q_D, \Sigma, \delta_D, q_0, F_D) \) such that \(L(M_N) = L(M_D) \).

Proof:

We need to define \(M_D \) based on \(M_N \).

\[Q_D = \mathcal{P}(Q_N) \]

\[F_D = \{ Q \in Q_D \mid \exists q_i \in F_N \text{ with } q_i \notin Q \} \]

\[\delta_D : Q_D \times \Sigma \rightarrow Q_D \]
Algorithm to construct M_D

1. start state is \(\{q_0\} \cup \text{closure}(q_0) \)
2. While can add an edge
 (a) Choose a state \(A = \{ q_i, q_j, \ldots q_k \} \) with missing edge for \(a \in \Sigma \)
 (b) Compute \(B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a) \)
 (c) Add state \(B \) if it doesn’t exist
 (d) add edge from \(A \) to \(B \) with label \(a \)
3. Identify final states
4. if \(\lambda \in L(M_N) \) then make the start state final.
Example:
Properties and Proving - Problem 1

Consider the property Replace_one_a_with_b or R1awb for short. If \(L \) is a regular, prove \(R1awb(L) \) is regular.

The property \(R1awb \) applied to a language \(L \) replaces one \(a \) in each string with a \(b \). If a string does not have an \(a \), then the string is not in \(R1awb(L) \).

Example 1: Consider \(L = \{aaab, bbaa\} \)

\[R1awb(L) = \{baab, abab, aabb, \ldots \} \]

Example 2: Consider \(\Sigma = \{a, b\} \), \(L = \{w \in \Sigma^* \mid w \) has an even number of a’s and an even number of b’s\}

\[R1awb(L) = \{w \in \Sigma^* \mid w \) has odd no. of a’s and odd no. of b’s\} \]

Proof:
Properties and Proving - Problem 2

Consider the property

Truncate all preceeding b’s or
TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).

Example 1: Consider \(L = \{aaab, bbaa\} \)

\[\text{TruncPreb}(L) = \{aa\} \]

Example 2: Consider \(L = \{(bba)^n | n > 0\} \)

\[\text{TruncPreb}(L) = \{a(bba)^n | n \geq 0\} \]

Proof:
Minimizing Number of states in DFA

Why?

Algorithm

• Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

$$
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
$$

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

$$
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR } \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
$$
Example:
Example: