Section: Regular Languages

Regular Expressions

Method to represent strings in a language

+ union (or)
 ○ concatenation (AND) (can omit)
 ∗ star-closure (repeat 0 or more times)

Example:

\((a + b)^* \circ a \circ (a + b)^*\) = \((a+b)^* a (a+b)^*\)

Strings over \(\Sigma^*\) that contain at least one \(a\).

Example:

\((aa)^*\) strings with even no. of \(a\)'s.
Definition Given \(\Sigma \),

1. \(\emptyset, \lambda, a \in \Sigma \) are R.E.

2. If \(r \) and \(s \) are R.E. then
 - \(r+s \) is R.E.
 - \(rs \) is R.E.
 - \((r) \) is a R.E.
 - \(r^* \) is R.E.

3. \(r \) is a R.E. iff it can be derived from
 (1) with a finite number of
 applications of (2).
Definition: $L(r) =$ language denoted by R.E. r.

1. \emptyset, $\{\lambda\}$, $\{a\}$ are L denoted by a R.E.

2. if r and s are R.E. then
 (a) $L(r+s) = L(r) \cup L(s)$
 (b) $L(rs) = L(r) \circ L(s)$
 (c) $L((r)) = L(r)$
 (d) $L((r)^*) = (L(r)^*)$
Precedence Rules
* highest

Example:

\[ab^* + c = a (b)^* + c \]
Examples:

1. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w$ has an odd number of a’s followed by an even number of b’s$\}$.

\[(aa)^*a(ww)^*\]

2. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w$ has no more than 3 a’s and must end in ab\}.

\[bbab + b*ab^*ab + b^*ab^*ab\]

3. Regular expression for all integers (including negative)

\[0 + (- + 2)(1 + 2 + \ldots + 9)(0 + 1 + \ldots + 9)^*\]
Section 3.2 Equivalence of DFA and R.E.

Theorem Let \(r \) be a R.E. Then \(\exists \) NFA \(M \) s.t. \(L(M) = L(r) \).

- **Proof:**

 \(\emptyset \)

 \(\{\lambda\} \)

 \(\{a\} \)

 Suppose \(r \) and \(s \) are R.E.

 1. \(r+s \)

 2. \(r\circ s \)

 3. \(r^* \)
Example

\[ab^* + c \]
Theorem Let \(L \) be regular. Then \(\exists \) R.E. \(r \) s.t. \(L=L(r) \).

Proof Idea: remove states successively until two states left

- Proof:
 \(L \) is regular
 \[\Rightarrow \exists \]

1. Assume \(M \) has one final state and \(q_0 \notin F \)

2. Convert to a generalized transition graph (GTG), all possible edges are present. If no edge, label with
 Let \(r_{ij} \) stand for label of the edge from \(q_i \) to \(q_j \)
3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

\[r = (r_{ii}^* r_{ij} r_{ji}^* r_{ji}^*)^* r_{ii}^* r_{ij} r_{jj}^* \]
4. If the GTG has three states then it must have the following form:
<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}r_{ki}$</td>
</tr>
</tbody>
</table>

remove state q_k
5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions r and s with:

\[
\begin{align*}
 r + r &= r \\
 s + r^*s &= \\
 r + \emptyset &= \\
 r\emptyset &= \\
 \emptyset^* &= \\
 r\lambda &= \\
 (\lambda + r)^* &= \\
 (\lambda + r)r^* &= \\
\end{align*}
\]

and similar rules.
Example:
Grammar $G=(V,T,S,P)$

V variables (nonterminals)
T terminals
S start symbol
P productions

Right-linear grammar:

all productions of form

$A \to xB$

$A \to x$

where $A,B \in V$, $x \in T^*$
Left-linear grammar:

\[
\text{all productions of form } \ A \rightarrow Bx \\
A \rightarrow x \\
\text{where } A, B \in V, \ x \in T^* \\
\]

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G=(\{S\},\{a,b\},S,P), \ P= \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]
Example 2:

$$G = (\{S, B\}, \{a, b\}, S, P), \quad P =$$

$$S \rightarrow aB \mid bS \mid \lambda$$

$$B \rightarrow aS \mid bB$$
Theorem: L is a regular language iff \exists regular grammar G s.t. $L = L(G)$.

Outline of proof:

(\Leftarrow) Given a regular grammar G
Construct NFA M
Show $L(G) = L(M)$

(\Rightarrow) Given a regular language \exists DFA M s.t. $L = L(M)$
Construct reg. grammar G
Show $L(G) = L(M)$
Proof of Theorem:

\[\iff \text{Given a regular grammar } G \\
G = (V, T, S, P) \\
V = \{ V_0, V_1, \ldots, V_y \} \\
T = \{ v_0, v_1, \ldots, v_z \} \\
S = V_0 \\
\text{Assume } G \text{ is right-linear} \\
\text{(see book for left-linear case).} \\
\text{Construct NFA } M \text{ s.t. } L(G) = L(M) \\
\text{If } w \in L(G), \ w = v_1 v_2 \ldots v_k \]
$M = (V \cup \{ V_f \}, T, \delta, V_0, \{ V_f \})$

V_0 is the start (initial) state

For each production, $V_i \rightarrow aV_j,$

For each production, $V_i \rightarrow a,$

Show $L(G) = L(M)$

Thus, given R.G. G, $L(G)$ is regular
Given a regular language L there exists a DFA M such that $L = L(M)$.

$M = (Q, \Sigma, \delta, q_0, F)$

$Q = \{q_0, q_1, \ldots, q_n\}$

$\Sigma = \{a_1, a_2, \ldots, a_m\}$

Construct a regular grammar G such that $L(G) = L(M)$.

$G = (Q, \Sigma, q_0, P)$

If $\delta(q_i, a_j) = q_k$ then

if $q_k \in F$ then

Show $w \in L(M) \iff w \in L(G)$

Thus, $L(G) = L(M)$.

QED.
Example

\[G = (\{S, B\}, \{a, b\}, S, P), \quad P = \]

\[S \rightarrow aB \mid bS \mid \lambda \]

\[B \rightarrow aS \mid bB \]
Example: