Section: Regular Languages

Regular Expressions

Method to represent strings in a language

+ union (or)
 ◦ concatenation (AND) (can omit)
 * star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^* = (a+b)^* a (a+b)^* \]

Strings over \(\Sigma^*\) that contain at least one \(a\).

Example:

\[(aa)^* \]

Strings with even no. of \(a\)'s.
Definition Given Σ,

1. \emptyset, λ, $a \in \Sigma$ are R.E.

2. If r and s are R.E. then
 - $r+s$ is R.E.
 - rs is R.E.
 - (r) is a R.E.
 - r^* is R.E.

3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).
Definition: \(L(r) = \text{language denoted by R.E. } r. \)

1. \(\emptyset, \{\lambda\}, \{a\} \) are \(L \) denoted by a R.E.

2. if \(r \) and \(s \) are R.E. then
 (a) \(L(r+s) = L(r) \cup L(s) \)
 (b) \(L(rs) = L(r) \circ L(s) \)
 (c) \(L((r)) = L(r) \)
 (d) \(L((r)^*) = (L(r)^*) \)
Precedence Rules

∗ highest

Example:

\[ab^* + c = a(b)^* + c \]
Examples:

1. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w$ has an odd number of a’s followed by an even number of b’s$\}$. $\{(aa)^*a(bb)^*\}$

2. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w$ has no more than 3 a’s and must end in ab\}. $b^*ab + b^*a^2b + b^*a^3b + b^*a^4b^*$

3. Regular expression for all integers (including negative) $0 + (- + 2)(1 + 2 + \ldots + 9)(0 + 1 + \ldots + 9)^*$
Section 3.2 Equivalence of DFA and R.E.

Theorem Let \(r \) be a R.E. Then \(\exists \) NFA \(M \) s.t. \(L(M) = L(r) \).

- Proof:

Suppose \(r \) and \(s \) are R.E.

1. \(r + s \)
2. \(r \circ s \)
3. \(r^* \)
Example

\(ab^* + c \)
Theorem Let L be regular. Then \exists R.E. r s.t. $L = L(r)$.

Proof Idea: remove states successively until two states left

• Proof:

 L is regular
 \implies \exists \text{ NFA } M \text{ s.t. } L = L(M)

1. Assume M has one final state and $q_0 \not\in F$

2. Convert to a generalized transition graph (GTG), all possible edges are present. If no edge, label with \emptyset

 Let r_{ij} stand for label of the edge from q_i to q_j
3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

\[r = (r_{ii}^*r_{ij}r_{ji}^*r_{ji})^*r_{ii}^*r_{ij}r_{jj}^* \]
4. If the GTG has three states then it must have the following form:
<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik} r_{kk} r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk} r_{kk} r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik} r_{kk} r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk} r_{kk} r_{ki}$</td>
</tr>
</tbody>
</table>

remove state q_k
5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions r and s with:

\[r + r = r \]
\[s + r^* s = r^* s \]
\[r + \emptyset = r \]
\[r\emptyset = \emptyset \]
\[\emptyset^* = \emptyset \]
\[r\lambda = r \]
\[(\lambda + r)^* = \]
\[(\lambda + r)r^* = \]

and similar rules.
Example:
Grammar $G=(V,T,S,P)$

V variables (nonterminals)
T terminals
S start symbol
P productions

Right-linear grammar:

all productions of form

$A \rightarrow xB$

$A \rightarrow x$

where $A,B \in V$, $x \in T^*$
Left-linear grammar:

all productions of form
\[A \rightarrow Bx \]
\[A \rightarrow x \]
where \(A, B \in V, \ x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a, b\}, S, P), \ P = \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]

\textit{Not regular grammar}
Example 2:

\[G = (\{S,B\}, \{a,b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]

Strings w/ even no. of \(a\)s
Theorem: L is a regular language iff \(\exists \) regular grammar G s.t. \(L = L(G) \).

Outline of proof:

\((\Leftarrow)\) Given a regular grammar G
Construct NFA M
Show \(L(G) = L(M) \)

\((\Rightarrow)\) Given a regular language
\(\exists \) DFA M s.t. \(L = L(M) \)
Construct reg. grammar G
Show \(L(G) = L(M) \)
Proof of Theorem:

\((\iff)\) Given a regular grammar \(G\)

\[G = (V, T, S, P) \]

\[V = \{V_0, V_1, \ldots, V_y\} \]

\[T = \{v_0, v_1, \ldots, v_z\} \]

\[S = V_0 \]

Assume \(G\) is right-linear

(see book for left-linear case).

Construct NFA \(M\) s.t. \(L(G) = L(M)\)

If \(w \in L(G)\), \(w = v_1 v_2 \ldots v_k\)

\[V_0 \xrightarrow{V_0} v_1 \]

\[\xrightarrow{v_1} v_2 \xrightarrow{V_2} \]

\[\xrightarrow{v_2} v_3 \ldots \xrightarrow{v_{k-1}} V_k \]

\[\xrightarrow{v_{k-1}} V_k \]

\[\xrightarrow{v_k} \]

\[v_1 v_2 \ldots v_k \]
$M=(V \cup \{V_f\}, T, \delta, V_0, \{V_f\})$

V_0 is the start (initial) state

For each production, $V_i \rightarrow aV_j$,

For each production, $V_i \rightarrow a$,

Show $L(G) = L(M)$

Thus, given R.G. G,

$L(G)$ is regular

Show $w \in L(G) \Rightarrow w \in L(M)$

by construction, path in M

Show $w \in L(M) \Rightarrow w \in L(G)$

NFA \rightarrow DFA \rightarrow regular
$(\implies) \text{ Given a regular language } L \ni \exists \text{ DFA } M \text{ s.t. } L = L(M) \\
M = (Q, \Sigma, \delta, q_0, F) \\
Q = \{q_0, q_1, \ldots, q_n\} \\
\Sigma = \{a_1, a_2, \ldots, a_m\} \\
\text{Construct R.G. } G \text{ s.t. } L(G) = L(M) \\
G = (Q, \Sigma, q_0, P) \\
\text{if } \delta(q_i, a_j) = q_k \text{ then} \\
q_i \rightarrow a_j q_k \in P \\
\text{if } q_k \in F \text{ then} \\
q_k \rightarrow \lambda \in P \\
\text{Show } w \in L(M) \iff w \in L(G) \\
\text{Thus, } L(G) = L(M). \\
QED.
Example

\[G = (\{S, B\}, \{a, b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Example:

\[G = (\Sigma, Q, \delta, q_0, F) \]

- \(q_0 \rightarrow a q_f \)
- \(q_1 \rightarrow \lambda \)
- \(q_1 \rightarrow b q_1 \)
- \(q_1 \rightarrow a q_0 \)