Section: Properties of Regular Languages

Example

\[L = \{ a^n b a^n \mid n > 0 \} \]

not regular

Closure Properties

A set is closed over an operation if

\[L_1, L_2 \in \text{class} \]
\[L_1 \text{ op } L_2 = L_3 \]
\[\Rightarrow L_3 \in \text{class} \]
L = \{ x \mid x \text{ is a positive even integer} \}

L is closed under

- addition? yes
- multiplication? yes
- subtraction? no
- division?

\[6 - 8 = -2 \]

Closure of Regular Languages

Theorem 4.1 If \(L_1 \) and \(L_2 \) are regular languages, then

- \(L_1 \cup L_2 \)
- \(L_1 \cap L_2 \)
- \(L_1 L_2 \)
- \(\overline{L}_1 \)
- \(L_1^* \)

are regular languages.
Proof(sketch)

L_1 and L_2 are regular languages
$\Rightarrow \exists$ reg. expr. r_1 and r_2 s.t.
$L_1 = L(r_1)$ and $L_2 = L(r_2)$
$r_1 + r_2$ is r.e. denoting $L_1 \cup L_2$
\Rightarrow closed under union
r_1r_2 is r.e. denoting L_1L_2
\Rightarrow closed under concatenation
r_1^* is r.e. denoting L_1^*
\Rightarrow closed under star-closure
complementation:

L_1 is reg. lang.

$\Rightarrow \exists$ DFA M s.t. $L_1 = L(M)$

Construct M' s.t.

Final states in M are nonfinal in M'

Nonfinal states in M are final in M'

Show $w \epsilon L(M')$ if and only if $\overline{w} \epsilon L$ (\Rightarrow closed under complementation)

(we construct a DFA for it so L is regular)
intersection:

L_1 and L_2 are reg. lang.

$\Rightarrow \exists$ DFA M_1 and M_2 s.t.

$L_1 = L(M_1)$ and $L_2 = L(M_2)$

$M_1= (Q, \Sigma, \delta_1, q_0, F_1)$

$M_2= (P, \Sigma, \delta_2, p_0, F_2)$

Construct $M' = (Q', \Sigma, \delta', (q_0, p_0), F')$

$Q' = Q \times P$

δ':

$\delta'(((q_i, p_j), a)) = (q_k, p_l)$ if

$\delta_1(q_i, a) = q_k \in M_1$

$\delta_2(p_j, a) = p_l \in M_2$

$F' = \{ (q_i, p_j) \in Q' | (q_i \in F_1, p_j \in F_2) \}$

show $w \in L(M') \iff w \in L_1 \land L_2$

\Rightarrow closed under intersection
Example:

M for intersection of the two DFA
Regular languages are closed under

- reversal \(L^R \)
- difference \(L_1 - L_2 \)
- right quotient \(L_1 / L_2 \)
- homomorphism \(h(L) \)
Right quotient

Def: $L_1/L_2 = \{ x | xy \in L_1 \text{ for some } y \in L_2 \}$

Example:

$L_1 = \{ a^*b^* \cup b^*a^* \}$
$L_2 = \{ b^n | n \text{ is even, } n > 0 \}$
$L_1/L_2 = \{ a^*b^* \}$

$L_1 = \{ aaabb, bbbbaa, bbb, aaaaabbb \}$
$L_1/L_2 = \{ aaaa, b, aaaaab, aaib \}$
Theorem If L_1 and L_2 are regular, then L_1/L_2 is regular.

Proof (sketch)

\exists DFA $M=(Q, \Sigma, \delta, q_0, F)$ s.t. $L_1 = L(M)$.

Construct DFA $M'=(Q, \Sigma, \delta, q_0, F')$

For each state i do

Make i the start state (representing L_i')

if $L_1 \cap L_2 \neq \emptyset$

put q_i in F' in M'

QED.
Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

$$h: \Sigma \rightarrow \Gamma^*$$

Example:

$$\Sigma = \{a, b, c\}, \Gamma = \{0, 1\}$$

- $h(a) = 11$
- $h(b) = 00$
- $h(c) = 0$

$$h(bc) = 000$$

$$h(ab^*) = 11(00)^*$$

$$h(ab^*) = h(a)h(b^*) = 11(00)^*$$
Questions about regular languages:

L is a regular language.

- Given L, \(\Sigma \), \(w \in \Sigma^* \), is \(w \in L \)?

 Construct FA and test to see if it accepts \(w \).

- Is L empty?

 Construct FA. If there is a path from start state to final state, DFS

- Is L infinite?

 DFA is a graph. Is there a cycle?

- Does \(L_1 = L_2 \)?

 Construct \(L_3 = (L_1 \cap L_2) \cup (L_1 \cap L_2) \)

 If \(L_3 = \emptyset \) then \(L_1 = L_2 \)
Identifying Nonregular Languages

If a language L is finite, is L regular?

If L is infinite, is L regular?

- $L_1 = \{a^n b^m | n > 0, m > 0\} = \varepsilon \varepsilon a b b$
- $L_2 = \{a^n b^n | n > 0\}$ not regular
Prove that $L_2 = \{a^n b^n | n > 0\}$ is ?

- **Proof:** Suppose L_2 is regular.
 \[\Rightarrow \exists \text{ DFA } M \text{ that recognizes } L_2 \]

M has a finite no. of states, say K states

Consider long string $a^b b^c \in L_2$

K states, K as's has to be a

loop with a part. But a loop has to have at least one a

Suppose we start at initial state

traverse path for a K b but travel the loop an extra time

\[\Rightarrow \text{ we accept } a^{K+3} b^j L_2, j > 0 \]

Contradiction, \(\Rightarrow L_2 \) is not regular
Pumping Lemma: Let L be an infinite regular language. There exists a constant $m > 0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w = xyz$ with

$$
|xy| \leq m \\
|y| \geq 1 \\
x y^i z \in L \text{ for all } i \geq 0
$$
To Use the Pumping Lemma to prove L is not regular:

- Proof by Contradiction.
 Assume L is regular.
 ⇒ L satisfies the pumping lemma.
 Choose a long string w in L, $|w| \geq m$.
 Show that there is NO division of w into xyz (must consider all possible divisions) such that $|xy| \leq m$, $|y| \geq 1$ and $xy^iz \in L \ \forall \ i \geq 0$.
 The pumping lemma does not hold. Contradiction!
 ⇒ L is not regular. QED.
Example $L = \{a^n c b^n | n > 0\}$

L is not regular.

- **Proof:**

 Assume L is regular.

 \Rightarrow the pumping lemma holds.

 Choose $w = a^m c b^m$

 Show there is no way to divide w into xyz s.t. $P.L.$ holds

 All partition are in this form:

 $x = a^k$, $y = a^j$, $z = a^{m-j-k} b^m$

 $i = 0$ $xy^iz = a^m c b^{m+k}$ is a contradiction

 Thus L is not regular.
Example $L = \{a^n b^{n+s} c^s | n, s > 0\}$

L is not regular.

- **Proof:**

 Assume L is regular.

 \Rightarrow the pumping lemma holds.

 Choose $w = a^m b^{m+s} c^s$

 So the partition is:

 only way to divide xyz

 $x = a^k$, $y = a^j$, $z = a^{m-k-j} b^{m+s} c^s$

 $i = 2$, $xyyz = a^m b^{m+s} c^s \notin L$

 no. a's + c's \neq no. b's too many a's

 contradiction

 $\Rightarrow L$ is not regular
Example $\Sigma = \{a, b\}$,
$L = \{w \in \Sigma^* \mid n_a(w) > n_b(w)\}$

L is not regular.

- Proof:
 Assume L is regular.
 \Rightarrow the pumping lemma holds.
 Choose $w = a^{m+1} b^m$

So the partition is:

- only one way

 $X = a^k \quad y = a^j \quad Z = a^m b^m$

 $i = 0 \quad x y^i z = x z = a^{m+1} b^m \notin L$

- no. of a's \leq no. of b's

 Contradiction

$\Rightarrow L$ is not regular
Example \(L = \{ a^3 b^n c^{n-3} | n > 3 \} \)
(shown in detail on handout)

\(L \) is not regular.
To Use Closure Properties to prove L is not regular:

- Proof Outline:
 Assume L is regular.
 Apply closure properties to L and other regular languages, constructing L' that you know is not regular.
 closure properties $\Rightarrow L'$ is regular. Contradiction!
 L is not regular. QED.
Example $L = \{a^3b^n c^{n-3} | n > 3\}$

L is not regular.

- **Proof:** (proof by contradiction)

 Assume L is regular.

 Define a homomorphism $h : \Sigma \rightarrow \Sigma^*$

 $h(a) = a$ $h(b) = a$ $h(c) = b$

 $h(L) = \{a^n b^{n-3} | n > 3\}$

 $= \{a^{n+3} b^{n-3} | n > 3\}$

$\{b, bb, bbb, bbbb, \}$

$L' = h(L)$ $\subseteq b^3 = \{a^{n+3} b^{n+3} | n > 3\}$

$L'' = \{a b, aabb, a^3 b^3, a^4 b^4, a^5 b^5, a^6 b^6\}$

$L''' = \{a^6 b^6 | n > 3\}$ regular

Contradiction!
$
\Rightarrow L$ is not regular.
Example $L=\{a^nb^ma^m|m \geq 0, n \geq 0\}$

L is not regular.

- Proof: (proof by contradiction)
 Assume L is regular.

 $L_1 = \exists b^*a^*b^3$ is regular

 $L_2 = L_1 \cap L = \{b^n \alpha^n | n > 0\}$

 $h(a) = b$, $h(b) = a$

 $h(L_2) = \exists a^n b^n | n > 0$ is not regular

 Contradiction

 $\Rightarrow L$ is not regular
Example: \(L_1 = \{a^n b^n a^n | n > 0\} \)

\(L_1 \) is not regular.

\[
L_2 = \{a^*b^* \} \text{ is regular}
\]

\[
L_3 = L_1 \setminus L_2 = \{a^n b^n a^p | n > 0, 0 \leq p \leq n\}
\]

\[
L_4 = L_3 \cap \{a^*b^* \} = \{a^n b^n | n \geq 0\}
\]

Contradiction!

\[\Rightarrow L \) is not regular \]