Section: Other Models of Turing Machines

Definition: Two automata are equivalent if they accept the same language.

Turing Machines with Stay Option

Modify δ,

$$s: Q \times \Gamma \rightarrow Q \times \Gamma \times \{\text{L}, \text{R}, \text{S}\}$$

Theorem Class of standard TM’s is equivalent to class of TM’s with stay option.

Proof:

\Rightarrow: Given a standard TM M, then there exists a TM M' with stay option such that $L(M) = L(M')$.

just use the same TM
\((\Leftarrow) \): Given a TM M with stay option, construct a standard TM M' such that \(L(M) = L(M') \).

\(M = (Q, \Sigma, \Gamma, \delta, q_0, B, F) \)

\(M' = (Q', \Sigma, \Gamma, \delta', q_0', B, F') \)

For each transition in M with a move (L or R) put the transition in M'. So, for

\[\delta(q_i, a) = (q_j, b, \text{L or R}) \]

put into \(\delta' \)

For each transition in M with S (stay-option), move right and move left. So for

\[\delta(q_i, a) = (q_j, b, \text{S}) \]

\[S'(q_{is}, a) = (q_{is}, b, \text{R}) \]

\[S(q_{is}, c) = (q_{is}, c, \text{L}) \]

for all \(c \in \Gamma \)

\(L(M) = L(M') \). QED.
Definition: A *multiple track* TM divides each cell of the tape into \(k \) cells, for some constant \(k \).

A 3-track TM:

\[
\begin{array}{cccc}
\text{b} & \text{c} & \text{a} & \text{b} \\
1 & 1 & 1 & \\
\text{a} & \\
\end{array}
\]

A multiple track TM starts with the input on the first track, all other tracks are blank.

\[\delta: Q \times (\Gamma \times \Gamma \times \Gamma) \rightarrow Q \times (\Gamma \times \Gamma \times \Gamma) \times \{L, R\}\]
Theorem Class of standard TM’s is equivalent to class of TM’s with multiple tracks.

Proof: (sketch)

• (⇒): Given standard TM M there exists a TM M’ with multiple tracks such that L(M)=L(M’).

• (⇐): Given a TM M with multiple tracks there exists a standard TM M’ such that L(M)=L(M’).

Encode each combination of symbols

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Now one symbol for each cell standard TM on that
Definition: A TM with a semi-infinite tape is a standard TM with a left boundary.

Theorem Class of standard TM’s is equivalent to class of TM’s with semi-infinite tapes.

Proof: (sketch)

• \Rightarrow: Given standard TM M there exists a TM M' with semi-infinite tape such that $L(M) = L(M')$. Given M, construct a 2-track semi-infinite TM M'
(⇐): Given a TM M with semi-infinite tape there exists a standard TM M’ such that L(M)=L(M’).
Definition: An Multitape Turing Machine is a standard TM with multiple (a finite number) read/write tapes.

For an n-tape TM, define δ:

$$Q \times \Gamma^3 \rightarrow Q \times \Gamma^3 \times \{L,R\}^3$$
Theorem Class of Multitape TM’s is equivalent to class of standard TM’s.

Proof: (sketch)

• (⇐): Given standard TM M, construct a multitape TM M’ such that $L(M) = L(M')$.

• (⇒): Given n-tape TM M construct a standard TM M’ such that $L(M) = L(M')$.

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definition: An Off-Line Turing Machine is a standard TM with 2 tapes: a read-only input tape and a read/write output tape.

Define δ:

```
| a | b | c |
```

(read only)

```
| b | b | d |
```

(read/write tape)

```
Control Unit
```

input tape
Theorem Class of standard TM’s is equivalent to class of Off-line TM’s.

Proof: (sketch)

• (\Rightarrow): Given standard TM M there exists an off-line TM M’ such that $L(M) = L(M')$.

• (\Leftarrow): Given an off-line TM M there exists a standard TM M’ such that $L(M) = L(M')$.

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Running Time of Turing Machines

Example:

Given $L = \{a^n b^n c^n | n > 0\}$. Given $w \in \Sigma^*$, is w in L?

Write a 3-tape TM for this problem.

Input: Tape 1

Copy to $T_2, T_3 \mathcal{O}(1)$

Repeat till a’s marked

$\mathcal{O}(n)$
Definition: An Multidimensional-tape Turing Machine is a standard TM with a multidimensional tape

\[\begin{array}{cccc}
& & & a \ \ b \ \ c \ \ d \\
\uparrow \\
\downarrow \\
\leftarrow & & & \rightarrow \\
\end{array}\]

Define \(\delta:\)
Theorem Class of standard TM’s is equivalent to class of 2-dimensional-tape TM’s.

Proof: (sketch)

• \((\Rightarrow)\): Given standard TM \(M\), construct a 2-dim-tape TM \(M'\) such that \(L(M) = L(M')\).

• \((\Leftarrow)\): Given 2-dim tape TM \(M\), construct a standard TM \(M'\) such that \(L(M) = L(M')\).
Construct M'
Definition: A nondeterministic Turing machine is a standard TM in which the range of the transition function is a set of possible transitions.

Define δ:

Theorem Class of deterministic TM’s is equivalent to class of nondeterministic TM’s.

Proof: (sketch)

- (\Rightarrow): Given deterministic TM M, construct a nondeterministic TM $M’$ such that $L(M)=L(M’)$.

- (\Leftarrow): Given nondeterministic TM M, construct a deterministic TM $M’$ such that $L(M)=L(M’)$.

Construct $M’$ to be a 2-dim tape TM.
A step consists of making one move for each of the current machines. For example: Consider the following transition:

$$\delta(q_0, a) = \{(q_1, b, R), (q_2, a, L), (q_1, c, R)\}$$

Being in state q_0 with input abc.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>q0</td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>
The one move has three choices, so 2 additional machines are started.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
& # & # & # & # & # \\
\hline
& b & b & c & # & \\
\hline
& q_1 & # & \\
\hline
& a & b & c & # & \\
\hline
& q_2 & # & \\
\hline
& c & b & c & # & \\
\hline
& q_1 & # & \\
\hline
& # & # & # & # & \\
\hline
\end{tabular}
\end{table}

$S(q_0, a) = \{ (q_1, b, R), (q_2, a, L), (q_1, c, R) \}$
Definition: A 2-stack NPDA is an NPDA with 2 stacks.

Define δ:
Consider the following languages which could not be accepted by an NPDA.

1. \(L = \{ a^n b^n c^n | n > 0 \} \)
2. \(L = \{ a^n b^n a^n b^n | n > 0 \} \)
3. \(L = \{ w \in \Sigma^* | \text{number of } a's \text{ equals number of } b's \text{ equals number of } c's \}, \Sigma = \{a, b, c\} \)
Theorem Class of 2-stack NPDA’s is equivalent to class of standard TM’s.

Proof: (sketch)

• \((\Rightarrow):\) Given 2-stack NPDA, construct a 3-tape TM \(M’\) such that \(L(M)=L(M’).\)
(⇐): Given standard TM M, construct a 2-stack NPDA M' such that $L(M) = L(M')$.
Universal TM - a programmable TM

- **Input:**
 - an encoded TM M
 - input string w

- **Output:**
 - Simulate M on w
An encoding of a TM

Let TM $M = \{Q, \Sigma, \Gamma, \delta, q_1, B, F\}$

- $Q = \{q_1, q_2, \ldots, q_n\}$
 Designate q_1 as the start state.
 Designate q_2 as the only final state.
 q_n will be encoded as n 1’s

- Moves
 L will be encoded by 1
 R will be encoded by 11

- $\Gamma = \{a_1, a_2, \ldots, a_m\}$
 where a_1 will always represent the B.
For example, consider the simple TM:

\[
\begin{array}{c}
 a;\text{a},R \\
 \downarrow \\
 q_1 \\
 \downarrow \\
 b;\text{a},L \\
 \rightarrow \quad q_2
\end{array}
\]

\[\Gamma = \{B, \text{a}, \text{b}\}\] which would be encoded as

The TM has 2 transitions,

\[\delta(q_1, \text{a}) = (q_1, \text{a}, R), \quad \delta(q_1, \text{b}) = (q_2, \text{a}, L)\]

which can be represented as 5-tuples:

\[(q_1, \text{a}, q_1, \text{a}, R), (q_1, \text{b}, q_2, \text{a}, L)\]

Thus, the encoding of the TM is:

\[0101101011011010111011011010\]
For example, the encoding of the TM above with input string “aba” would be encoded as:

01011010110110110110100110111011011011011011011101
Universal TM

The Universal TM (denoted M_U) is a 3-tape TM:
Program for M_U

1. Start with all input (encoding of TM and string w) on tape 1. Verify that it contains the encoding of a TM.

2. Move input w to tape 2

3. Initialize tape 3 to 1 (the initial state)

4. Repeat (simulate TM M)
 (a) consult tape 2 and 3, (suppose current symbol on tape 2 is a and state on tape 3 is p)
 (b) lookup the move (transition) on tape 1, (suppose $\delta(p,a) = (q,b,R)$.)
 (c) apply the move
 ● write on tape 2 (write b)
 ● move on tape 2 (move right)
 ● write new state on tape 3 (write q)
Observation: Every TM can be encoded as string of 0’s and 1’s.

Enumeration procedure - process to list all elements of a set in ordered fashion.

Definition: An infinite set is countable if its elements have 1-1 correspondence with the positive integers.

Examples:

- \(S = \{ \text{positive odd integers} \} \)
- \(S = \{ \text{real numbers} \} \)
- \(S = \{ w \in \Sigma^+ \}, \Sigma = \{a, b\} \)
- \(S = \{ \text{TM’s} \} \)
- \(S = \{(i,j) \mid i,j>0, \text{are integers}\} \)
Linear Bounded Automata

We place restrictions on the amount of tape we can use,

\[
\begin{array}{|c|c|c|}
\hline
a & b & c \\
\hline
\end{array}
\]

↑

Definition: A linear bounded automaton (LBA) is a nondeterministic TM
\(M=(Q, \Sigma, \Gamma, \delta, q_0, B, F)\) such that \([,] \in \Sigma\) and the tape head cannot move out of the confines of []’s. Thus, \(\delta(q_i, [,) = (q_j, [, R), \text{ and } \delta(q_i,]) = (q_j,], L)\)

Definition: Let \(M\) be a LBA.
\[L(M)=\{w \in (\Sigma - \{[\,],[\}]\}^* | q_0[w] \vdash [x_1q_f x_2]\}\]

Example: \(L=\{a^n b^n c^n | n > 0\} \) is accepted by some LBA