Section: Other Models of Turing Machines

Definition: Two automata are equivalent if they accept the same language.

Turing Machines with Stay Option

Modify δ,

$$
8: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S, Z\}
$$

Theorem Class of standard TM’s is equivalent to class of TM’s with stay option.

Proof:

• (\Rightarrow): Given a standard TM M, then there exists a TM M' with stay option such that $L(M) = L(M')$.

 just use the same TM
• \((\leftrightarrow)\): Given a TM \(M\) with stay option, construct a standard TM \(M'\) such that \(L(M)=L(M')\).

\(M=\langle Q, \Sigma, \Gamma, \delta, q_0, B, F \rangle\)

\(M'=\langle Q, \Sigma, \Gamma, \delta', q_0, B, F \rangle\)

For each transition in \(M\) with a move (L or R) put the transition in \(M'\). So, for

\[\delta(q_i, a) = (q_j, b, L \text{ or } R)\]

put into \(\delta'\)

For each transition in \(M\) with S (stay-option), move right and move left. So for

\[\delta(q_i, a) = (q_j, b, S)\]

\[S'(q_{is}, a) = (q_{is}, b, R)\]

\[S(q_{is}, c) = (q_{is}, c, L)\]

for all \(c \in \Gamma\)

\(L(M)=L(M')\). QED.
Definition: A *multiple track* TM divides each cell of the tape into k cells, for some constant k.

A 3-track TM:

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A multiple track TM starts with the input on the first track, all other tracks are blank.

$\delta: Q \times (\Gamma \times \Gamma \times \Gamma) \rightarrow Q \times (\Gamma \times \Gamma \times \Gamma) \times \Sigma \cdot \Gamma^*$
Theorem Class of standard TM’s is equivalent to class of TM’s with multiple tracks.

Proof: (sketch)

• \((\Rightarrow)\): Given standard TM \(M\) there exists a TM \(M'\) with multiple tracks such that \(L(M) = L(M')\).

• \((\Leftarrow)\): Given a TM \(M\) with multiple tracks there exists a standard TM \(M'\) such that \(L(M) = L(M')\).
Definition: A TM with a semi-infinite tape is a standard TM with a left boundary.

Theorem Class of standard TM’s is equivalent to class of TM’s with semi-infinite tapes.

Proof: (sketch)

• \((\Rightarrow)\): Given standard TM M there exists a TM M’ with semi-infinite tape such that \(L(M) = L(M')\).

Given M, construct a 2-track semi-infinite TM M’
\(\Leftarrow\): Given a TM \(M\) with semi-infinite tape there exists a standard TM \(M'\) such that \(L(M) = L(M')\).
Definition: An Multitape Turing Machine is a standard TM with multiple (a finite number) read/write tapes.

For an n-tape TM, define δ:
Theorem Class of Multitape TM’s is equivalent to class of standard TM’s.

Proof: (sketch)

• \((\Leftarrow)\): Given standard TM \(M\), construct a multitape TM \(M'\) such that \(L(M) = L(M')\).

• \((\Rightarrow)\): Given \(n\)-tape TM \(M\) construct a standard TM \(M'\) such that \(L(M) = L(M')\).
Definition: An Off-Line Turing Machine is a standard TM with 2 tapes: a read-only input tape and a read/write output tape.

Define δ:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>input tape (read only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td>d</td>
<td>read/write tape</td>
</tr>
</tbody>
</table>

Diagram:

Control Unit

Diagram shows a control unit with input tape and read/write tape states.
Theorem Class of standard TM’s is equivalent to class of Off-line TM’s.

Proof: (sketch)

• (⇒): Given standard TM M there exists an off-line TM M’ such that \(L(M) = L(M') \).

• (⇐): Given an off-line TM M there exists a standard TM M’ such that \(L(M) = L(M') \).

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Running Time of Turing Machines

Example:

Given \(L = \{ a^n b^n c^n | n > 0 \} \). Given \(w \in \Sigma^* \), is \(w \) in \(L \)?

Write a 3-tape TM for this problem.
Definition: An Multidimensional-tape Turing Machine is a standard TM with a multidimensional tape

Define δ:
Theorem Class of standard TM’s is equivalent to class of 2-dimensional-tape TM’s.

Proof: (sketch)

• \(\Rightarrow\): Given standard TM \(M\), construct a 2-dim-tape TM \(M'\) such that \(L(M)=L(M')\).

• \(\Leftarrow\): Given 2-dim tape TM \(M\), construct a standard TM \(M'\) such that \(L(M)=L(M')\).
Construct M'
Definition: A *nondeterministic* Turing machine is a standard TM in which the range of the transition function is a set of possible transitions.

Define δ:

Theorem Class of deterministic TM’s is equivalent to class of nondeterministic TM’s.

Proof: (sketch)

- (\Rightarrow): Given deterministic TM M, construct a nondeterministic TM M' such that $L(M) = L(M')$.

- (\Leftarrow): Given nondeterministic TM M, construct a deterministic TM M' such that $L(M) = L(M')$. Construct M' to be a 2-dim tape TM.
A step consists of making one move for each of the current machines. For example: Consider the following transition:

\[\delta(q_0, a) = \{(q_1, b, R), (q_2, a, L), (q_1, c, R)\} \]

Being in state \(q_0 \) with input abc.
The one move has three choices, so 2 additional machines are started.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td>q₁</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>q₂</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td>q₁</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>
Definition: A 2-stack NPDA is an NPDA with 2 stacks.

Define δ:
Consider the following languages which could not be accepted by an NPDA.

1. \(L = \{ a^n b^n c^n \mid n > 0 \} \)

2. \(L = \{ a^n b^n a^n b^n \mid n > 0 \} \)

3. \(L = \{ w \in \Sigma^* \mid \text{number of } a\text{'s equals number of } b\text{'s equals number of } c\text{'s} \}, \Sigma = \{ a, b, c \} \)
Theorem Class of 2-stack NPDA’s is equivalent to class of standard TM’s.

Proof: (sketch)

• (⇒): Given 2-stack NPDA, construct a 3-tape TM M’ such that \(L(M) = L(M') \).
\item (\leftarrow): Given standard TM M, construct a 2-stack NPDA M' such that $L(M) = L(M')$.
Universal TM - a programmable TM

● Input:
 – an encoded TM M
 – input string w

● Output:
 – Simulate M on w
An encoding of a TM

Let TM \(M = \{ Q, \Sigma, \Gamma, \delta, q_1, B, F \} \)

- \(Q = \{ q_1, q_2, \ldots, q_n \} \)
 Designate \(q_1 \) as the start state.
 Designate \(q_2 \) as the only final state.
 \(q_n \) will be encoded as \(n \) 1’s
- Moves
 L will be encoded by 1
 R will be encoded by 11
- \(\Gamma = \{ a_1, a_2, \ldots, a_m \} \)
 where \(a_1 \) will always represent the B.
For example, consider the simple TM:

\[
\begin{array}{c}
\text{a;a,R} \\
\downarrow \\
q_1 \\
\text{b;a,L} \\
\rightarrow q_2
\end{array}
\]

\[\Gamma = \{B, a, b\}\] which would be encoded as

The TM has 2 transitions,

\[\delta(q_1, a) = (q_1, a, R), \quad \delta(q_1, b) = (q_2, a, L)\]

which can be represented as 5-tuples:

\[(q_1, a, q_1, a, R), (q_1, b, q_2, a, L)\]

Thus, the encoding of the TM is:

\[0101101011011010111011011010\]
For example, the encoding of the TM above with input string “aba” would be encoded as:

010110101101101101101001101110110110111011101
Universal TM

The Universal TM (denoted M_U) is a 3-tape TM:

Control Unit

0 1 1 0 ...

tape contents of M

0 1 0 1 ...

encoding of M

1 1 1

current state of M
Program for M_U

1. Start with all input (encoding of TM and string w) on tape 1. Verify that it contains the encoding of a TM.

2. Move input w to tape 2

3. Initialize tape 3 to 1 (the initial state)

4. Repeat (simulate TM M)
 (a) consult tape 2 and 3, (suppose current symbol on tape 2 is a and state on tape 3 is p)
 (b) lookup the move (transition) on tape 1, (suppose $\delta(p,a)=(q,b,R)$.)
 (c) apply the move
 - write on tape 2 (write b)
 - move on tape 2 (move right)
 - write new state on tape 3 (write q)
Observation: Every TM can be encoded as string of 0’s and 1’s.

Enumeration procedure - process to list all elements of a set in ordered fashion.

Definition: An infinite set is countable if its elements have 1-1 correspondence with the positive integers.

Examples:

- $S = \{ \text{positive odd integers} \}$
- $S = \{ \text{real numbers} \}$
- $S = \{ w \in \Sigma^+ \}, \Sigma = \{a, b\}$
- $S = \{ \text{TM’s} \}$
- $S = \{ (i,j) \mid i, j > 0, \text{are integers} \}$
Linear Bounded Automata

We place restrictions on the amount of tape we can use,

\[
\begin{array}{ccc}
[a] & [b] & [c] \\
\uparrow & & \\
\end{array}
\]

Definition: A linear bounded automaton (LBA) is a nondeterministic TM
\[M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)\] such that \([,] \in \Sigma\) and the tape head cannot move out of the confines of \([,]’s\). Thus,
\[\delta(q_i, [) = (q_j, [, R), \text{ and } \delta(q_i,]) = (q_j,], L)\]

Definition: Let \(M\) be a LBA.
\[L(M) = \{ w \in (\Sigma - \{[,]\})^* | q_0[w] \vdash [x_1q_fx_2] \}\]

Example: \(L = \{a^n b^n c^n | n > 0\}\) is accepted by some LBA