Read Chapter 11 in Linz.

Definition: A language L is *recursively enumerable* if there exists a TM M such that $L = L(M)$.

Definition: A language L is *recursive* if there exists a TM M such that $L = L(M)$ and M halts on every $w \in \Sigma^+$.

Enumeration procedure for recursive languages

To enumerate all $w \in \Sigma^+$ in a recursive language L:

- Let M be a TM that recognizes L, $L = L(M)$.
- Construct 2-tape TM M'
 - Tape 1 will enumerate the strings in Σ^+
 - Tape 2 will enumerate the strings in L.
 - On tape 1 generate the next string v in Σ^+
 - simulate M on v
 - if M accepts v, then write v on tape 2.
Enumeration procedure for recursively enumerable languages

To enumerate all \(w \in \Sigma^+ \) in a recursively enumerable language \(L \):

Repeat forever

- Generate next string (Suppose \(k \) strings have been generated: \(w_1, w_2, \ldots, w_k \))
- Run \(M \) for one step on \(w_k \)
 - Run \(M \) for two steps on \(w_{k-1} \).
 - ...
 - Run \(M \) for \(k \) steps on \(w_1 \).
 - If any of the strings are accepted then write them to tape 2.

Theorem Let \(S \) be an infinite countable set. Its powerset \(2^S \) is not countable.

Proof - Diagonalization

- \(S \) is countable, so it’s elements can be enumerated.
 \[S = \{s_1, s_2, s_3, s_4, s_5, s_6, \ldots\} \]
 An element \(t \in 2^S \) can be represented by a sequence of 0’s and 1’s such that the \(i \)th position in \(t \) is 1 if \(s_i \) is in \(t \), 0 if \(s_i \) is not in \(t \).
 Example, \(\{s_2, s_3, s_5\} \) represented by
 Example, set containing every other element from \(S \), starting with \(s_1 \) is \(\{s_1, s_3, s_5, s_7, \ldots\} \) represented by
 Suppose \(2^S \) countable. Then we can enumerate all its elements: \(t_1, t_2, \ldots \)

<table>
<thead>
<tr>
<th></th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
<th>(s_7)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>(t_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>(t_4)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>(t_5)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>(t_6)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>(t_7)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Theorem For any nonempty Σ, there exist languages that are not recursively enumerable.

Proof:

- A language is a subset of Σ^*.
 The set of all languages over Σ is

Theorem There exists a recursively enumerable language L such that \bar{L} is not recursively enumerable.

Proof:

- Let $\Sigma = \{a\}$

 Enumerate all TM's over Σ:

| | a | aa | aaa | aaaa | aaaaa | ...
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(M_1)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_3)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_4)$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_5)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The next two theorems in conjunction with the previous theorem will show that there are some languages that are recursively enumerable, but not recursive.

Theorem If languages \(L \) and \(\overline{L} \) are both RE, then \(L \) is recursive.

Proof:

- There exists an \(M_1 \) such that \(M_1 \) can enumerate all elements in \(L \).
- There exists an \(M_2 \) such that \(M_2 \) can enumerate all elements in \(\overline{L} \).
- To determine if a string \(w \) is in \(L \) or not in \(L \) perform the following algorithm:

Theorem: If \(L \) is recursive, then \(\overline{L} \) is recursive.

Proof:

- \(L \) is recursive, then there exists a TM \(M \) such that \(M \) can determine if \(w \) is in \(L \) or \(w \) is not in \(L \). \(M \) outputs a 1 if a string \(w \) is in \(L \), and outputs a 0 if a string \(w \) is not in \(L \).
- Construct TM \(M' \) that does the following. \(M' \) first simulates TM \(M \). If TM \(M \) halts with a 1, then \(M' \) erases the 1 and writes a 0. If TM \(M \) halts with a 0, then \(M' \) erases the 0 and writes a 1.

Hierarchy of Languages:

```
<table>
<thead>
<tr>
<th>Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>all languages</td>
</tr>
<tr>
<td>recursively enumerable languages</td>
</tr>
<tr>
<td>recursive languages</td>
</tr>
<tr>
<td>context-free languages</td>
</tr>
<tr>
<td>regular languages</td>
</tr>
</tbody>
</table>
```
Definition A grammar \(G = (V, T, S, P) \) is *unrestricted* if all productions are of the form

\[
u \to v
\]

where \(u \in (V \cup T)^+ \) and \(v \in (V \cup T)^* \)

Example:

Let \(G = (\{S, A, X\}, \{a, b\}, S, P) \), \(P = \)

\[
S \to bAaX \\
bAa \to abA \\
AX \to \lambda
\]

Example Find an unrestricted grammar \(G \) s.t. \(L(G) = \{a^n b^n c^n \mid n > 0\} \)

\(G = (V, T, S, P) \)

\(V = \{S, A, B, D, E, X\} \)

\(T = \{a, b, c\} \)

\(P = \)

1) \(S \to AX \)
2) \(A \to aAbc \)
3) \(A \to aBbc \)
4) \(Bb \to bB \)
5) \(Be \to D \)
6) \(Dc \to cD \)
7) \(Db \to bD \)
8) \(DX \to EXc \)

There are some rules missing in the grammar.

To derive string \(aabbbccc \), use productions 1, 2 and 3 to generate a string that has the correct number of a’s b’s and c’s. The a’s will all be together, but the b’s and c’s will be intertwined.

\[
S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aaAbcbcX \Rightarrow aabbcbbcX
\]
Theorem If G is an unrestricted grammar, then L(G) is recursively enumerable.

Proof:

• List all strings that can be derived in one step.

List all strings that can be derived in two steps.

Theorem If L is recursively enumerable, then there exists an unrestricted grammar G such that L=L(G).

Proof:

• L is recursively enumerable.

⇒ there exists a TM M such that L(M)=L.

M = (Q, Σ, Γ, δ, q₀, B, F)

q₀ \vDash x₁qₓq₂ for some q_f ∈ F, x₁, x₂ ∈ Γ*

Construct an unrestricted grammar G s.t. L(G)=L(M).

S \Rightarrow w

Three steps

1. S \Rightarrow B...B\#xq_yB...B

 with x,y ∈ Γ* for every possible combination

2. B...B\#xq_yB...B \Rightarrow B...B\#q₀wB...B

3. B...B\#q₀wB...B \Rightarrow w
Definition A grammar G is *context-sensitive* if all productions are of the form

$$x \rightarrow y$$

where $x, y \in (V \cup T)^+$ and $|x| \leq |y|$.

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that $L = L(G)$ or $L = L(G) \cup \{\lambda\}$.

Theorem For every CSL L not including λ, \exists an LBA M s.t. $L = L(M)$.

Theorem If L is accepted by an LBA M, then \exists CSG G s.t. $L(M) = L(G)$.

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.