Section: Properties of Context-free Languages

Which of the following languages are CFL?

- $L = \{ a^n b^n c^j \mid 0 < n \leq j \}$
- $L = \{ a^n b^j a^n b^j \mid n > 0, j > 0 \}$
- $L = \{ a^n b^j a^k b^p \mid n + j \leq k + p, n > 0, j > 0, k > 0, p > 0 \}$
- $L = \{ a^n b^j a^j b^n \mid n > 0, j > 0 \}$
Pumping Lemma for Regular Language’s: Let L be a regular language, Then there is a constant m such that $w \in L$, $|w| \geq m$, $w = xyz$ such that

- $|xy| \leq m$
- $|y| \geq 1$
- for all $i \geq 0$, $xy^iz \in L$
Pumping Lemma for CFL’s Let L be any infinite CFL. Then there is a constant m depending only on L, such that for every string w in L, with $|w| \geq m$, we may partition $w = uvxyz$ such that:

- $|vxy| \leq m$, (limit on size of substring)
- $|vy| \geq 1$, (v and y not both empty)

For all $i \geq 0$, $uv^i x y^i z \in L$

- **Proof:** (sketch) There is a CFG G s.t. $L = L(G)$.
 Consider the parse tree of a long string in L.
 For any long string, some nonterminal N must appear twice in the path.
Example: Consider \(L = \{a^nb^nc^n : n \geq 1\} \). Show \(L \) is not a CFL.

• Proof: (by contradiction)
 Assume \(L \) is a CFL and apply the pumping lemma.
 Let \(m \) be the constant in the pumping lemma and consider \(w = a^mb^mc^m \). Note \(|w| \geq m\).
 Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1\), \(|vxy| \leq m\), and \(uv^ixy^iz \in L \) for \(i = 0, 1, 2, \ldots \).
Thus, there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, $uv^i xy^i z$ is in L. Contradiction, thus, L is not a CFL. Q.E.D.
Example Why would we want to recognize a language of the type \(\{a^n b^n c^n : n \geq 1\} \)?

Example: Consider
\(L = \{a^n b^n c^p : p > n > 0\} \). Show \(L \) is not a CFL.

- Proof: Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider
\(w = \) \(\) Note \(|w| \geq m \). Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \), \(|vxy| \leq m \), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).
Example: Consider $L = \{a^j b^k : k = j^2\}$. Show L is not a CFL.

- Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider

$w = \text{__________}

Show there is no division of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^ixy^iz \in L$ for $i = 0, 1, 2, \ldots$.

Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a’s and b’s, then $uv^2xy^2z \notin L$ since there will be b’s before a’s.

Thus, v and y can be only a’s, and b’s (not mixed).
Example: Consider
$L = \{w\bar{w}w : w \in \Sigma^*\}, \Sigma = \{a, b\}$, where \bar{w} is the string w with each occurrence of a replaced by b and each occurrence of b replaced by a. Show L is not a CFL.

- Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = \underline{\ldots}$

Show there is no division of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^ixy^iz \in L$ for $i = 0, 1, 2, \ldots$.
Example: Consider $L = \{a^n b^p b^p a^n\}$. L is a CFL. The pumping lemma should apply!

Let $m \geq 4$ be the constant in the pumping lemma. Consider $w = a^m b^m b^m a^m$.

We can break w into $uvxyz$, with:
Chap 8.2 Closure Properties of CFL’s

Theorem CFL’s are closed under union, concatenation, and star-closure.

• Proof:

 Given 2 CFG $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$

 – Union:

 Construct G_3 s.t. $L(G_3) = L(G_1) \cup L(G_2)$.
 $G_3 = (V_3, T_3, S_3, P_3)$
– Concatenation:
 Construct G_3 s.t. $L(G_3) = L(G_1) \circ L(G_2)$.
 $G_3 = (V_3, T_3, S_3, P_3)$

– Star-Closure
 Construct G_3 s.t. $L(G_3) = L(G_1)^*$
 $G_3 = (V_3, T_3, S_3, P_3)$
Theorem CFL’s are NOT closed under intersection and complementation.

• Proof:
 – Intersection:
– Complementation:
Theorem: CFL’s are closed under regular intersection. If L_1 is CFL and L_2 is regular, then $L_1 \cap L_2$ is CFL.

- Proof: (sketch) We take a NPDA for L_1 and a DFA for L_2 and construct a NPDA for $L_1 \cap L_2$.

$M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_0, z, F_1)$ is an NPDA such that $L(M_1) = L_1$.

$M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2)$ is a DFA such that $L(M_2) = L_2$.

Example of replacing arcs (NOT a Proof!):
We must formally define δ_3. If

then

Must show

if and only if
Questions about CFL:

1. Decide if CFL is empty?

2. Decide if CFL is infinite?
Example: Consider \(L = \{a^{2n}b^{2m}c^n d^m : n, m \geq 0\} \). Show \(L \) is not a CFL.

- Proof: Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider
\[w = a^{2m}b^{2m}c^m d^m. \]

Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m \), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Case 1: Neither \(v \) nor \(y \) can contain 2 or more distinct symbols. If \(v \) contains \(a \)'s and \(b \)'s, then \(uv^2xy^2z \notin L \) since there will be \(b \)'s before \(a \)'s.

Thus, \(v \) and \(y \) can be only \(a \)'s, \(b \)'s, \(c \)'s, or \(d \)'s (not mixed).

Case 2: \(v = a^{t_1} \), then \(y = a^{t_2} \) or \(b^{t_3} \) (\(|vxy| \leq m \))

If \(y = a^{t_2} \), then
\[uv^2 \! y^2 z = a^{2m+t_1+t_2} b^{2m} c^m d^m \notin L \text{ since } t_1 + t_2 > 0, \text{ the number of } a\text{'s is not twice the number of } c\text{'s.} \]

If \(y = b^{t_3} \), then
\[uv^2 \! y^2 z = a^{2m+t_1} b^{2m+t_3} c^m d^m \notin L \text{ since } t_1 + t_3 > 0, \text{ either the number of } a\text{'s (denoted } n(a)\text{)} \text{ is not twice } n(c) \text{ or } n(b) \text{ is not twice } n(d). \]

Case 3: \(v = b^{t_1} \), then \(y = b^{t_2} \) or \(c^{t_3} \)

If \(y = b^{t_2} \), then
\[uv^2 \! y^2 z = a^{2m} b^{2m+t_1+t_2} c^m d^m \notin L \text{ since } t_1 + t_2 > 0, \text{ } n(b) > 2 \times n(d). \]

If \(y = c^{t_3} \), then
\[uv^2 \! y^2 z = a^{2m} b^{2m+t_1} c^{m+t_3} d^m \notin L \text{ since } t_1 + t_3 > 0, \text{ either } n(b) > 2 \times n(d) \text{ or } 2 \times n(c) > n(a). \]

Case 4: \(v = c^{t_1} \), then \(y = c^{t_2} \) or \(d^{t_3} \)

If \(y = c^{t_2} \), then
\[uv^2 \! y^2 z = a^{2m} b^{2m} c^{m+t_1+t_2} d^m \notin L \text{ since } t_1 + t_2 > 0, \text{ } 2 \times n(c) > n(a). \]

If \(y = d^{t_3} \), then
\[uv^2xy^2z = a^{2m}b^{2m}c^m t_1 d^{m+t_3} \notin L \] since \(t_1 + t_3 > 0 \), either \(2*n(c) > n(a) \) or \(2*n(d) > n(b) \).

Case 5: \(v = d^t_1 \), then \(y = d^t_2 \)
then \(uv^2xy^2z = a^{2m}b^{2m}c^m d^{m+t_1+t_2} \notin L \) since \(t_1 + t_2 > 0 \), \(2*n(d) > n(c) \).

Thus, there is no breakdown of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \), \(|vxy| \leq m \) and for all \(i \geq 0 \), \(uv^i xy^i z \) is in \(L \). Contradiction, thus, \(L \) is not a CFL. Q.E.D.