Methods for Transforming Grammars

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol S_0,

$$S_0 \rightarrow S \mid \lambda$$
Theorem (Substitution) Let G be a CFG. Suppose G contains

$$A \to x_1Bx_2$$

where A and B are different variables, and B has the productions

$$B \to y_1|y_2|\ldots|y_n$$

Then can construct G' from G by deleting

$$A \to x_1Bx_2$$

from P and adding to it

$$A \to x_1y_1x_2|x_1y_2x_2|\ldots|x_1y_nx_2$$

Then, $L(G)=L(G')$.

Example:

S \rightarrow aBa becomes
B \rightarrow aS \mid a

Definition: A production of the form
A \rightarrow Ax, A \in V, x \in (V \cup T)^* is left recursive.
Example Previous expression
grammar was left recursive.

\[
\begin{align*}
E & \rightarrow E + T \mid T \\
T & \rightarrow T * F \mid F \\
F & \rightarrow I \mid (E) \\
I & \rightarrow a \mid b
\end{align*}
\]

Derivation of a + b + a + a is:

\[
E \Rightarrow E + T \Rightarrow E + T + T \Rightarrow E + T + T + T
\]

\[
\Rightarrow^* a + T + T + T
\]
Theorem (Removing Left recursion)
Let $G=(V,T,S,P)$ be a CFG. Divide productions for variable A into left-recursive and non left-recursive productions:

\[
\begin{align*}
A & \rightarrow A \cdot x_1 \mid A \cdot x_2 \mid \ldots \mid A \cdot x_n \\
A & \rightarrow y_1 \mid y_2 \mid \ldots \mid y_m
\end{align*}
\]

where x_i, y_i are in $(V \cup T)^*$.

Then $G'=(V\cup\{Z\}, T, S, P')$ and P' replaces rules of form above by

\[
\begin{align*}
A & \rightarrow y_i \cdot y_i Z, \ i=1,2,\ldots,m \\
Z & \rightarrow x_i \cdot x_i Z, \ i=1,2,\ldots,n
\end{align*}
\]
Example:
\[E \to E + T | T \] becomes
\[T \to T \ast F | F \] becomes

Now, Derivation of \(a+b+a+a \) is:
Useless productions

S → aB | bA
A → aA
B → Sa
C → cBc | a

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then ∃ G’ that does not contain any useless variables or productions s.t. L(G)=L(G’).
To Remove Useless Productions:
Let $G=(V,T,S,P)$.

I. Compute $V_1=\{\text{Variables that can derive strings of terminals}\}$

1. $V_1=\emptyset$

2. Repeat until no more variables added
 - For every $A\in V$ with $A\to x_1x_2\ldots x_n$, $x_i \in (T^* \cup V_1)$, add A to V_1

3. $P_1 = \text{all productions in } P \text{ with symbols in } (V_1 \cup T)^*$

Then $G_1=(V_1,T,S,P_1)$ has no variables that can’t derive strings.
II. Draw Variable Dependency Graph

For $A \rightarrow xBy$, draw $A \rightarrow B$.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G' is s.t. $L(G) = L(G')$ and G' has no useless productions.
Example:

\[
\begin{align*}
S & \rightarrow aB \mid bA \\
A & \rightarrow aA \\
B & \rightarrow Sa \mid b \\
C & \rightarrow cBc \mid a \\
D & \rightarrow bCb \\
E & \rightarrow Aa \mid b
\end{align*}
\]
Theorem (remove λ productions) Let G be a CFG with λ not in $L(G)$. Then \exists a CFG G' having no λ-productions s.t. $L(G) = L(G')$.

To Remove λ-productions

1. Let $V_n = \{ A \mid \exists$ production $A \rightarrow \lambda \}$

2. Repeat until no more additions
 - if $B \rightarrow A_1A_2\ldots A_m$ and $A_i \in V_n$ for all i, then put B in V_n

3. Construct G' with productions P' s.t.
 - If $A \rightarrow x_1x_2\ldots x_m \in P$, $m \geq 1$, then put all productions formed when x_j is replaced by λ (for all $x_j \in V_n$) s.t. $|\text{rhs}| \geq 1$ into P'.
Example:

\[S \rightarrow Ab \]
\[A \rightarrow BCB \mid Aa \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow cC \mid \lambda \]
Definition Unit Production

\[A \rightarrow B \]

where \(A, B \in V \).

Consider removing unit productions:

Suppose we have

\[A \rightarrow B \]

becomes

\[B \rightarrow a \mid ab \]

But what if we have

\[A \rightarrow B \]

becomes

\[B \rightarrow C \]

\[C \rightarrow A \]
Theorem (Remove unit productions)
Let $G=(V,T,S,P)$ be a CFG without λ-productions. Then \exists CFG $G'=(V',T',S,P')$ that does not have any unit-productions and $L(G)=L(G')$.

To Remove Unit Productions:

1. Find for each A, all B s.t. $A \Rightarrow^* B$
 (Draw a dependency graph)
2. Construct $G'=(V',T',S,P')$ by
 (a) Put all non-unit productions in P'
 (b) For all $A \Rightarrow^* B$ s.t. $B \rightarrow y_1|y_2|\ldots y_n \in P'$, put $A \rightarrow y_1|y_2|\ldots y_n \in P'$
Example:

\[S \rightarrow AB \]
\[A \rightarrow B \]
\[B \rightarrow C \mid Bb \]
\[C \rightarrow A \mid c \mid Da \]
\[D \rightarrow A \]
Theorem Let L be a CFL that does not contain λ. Then \exists a CFG for L that does not have any useless productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

\[A \rightarrow BC \quad \text{or} \quad A \rightarrow a \]

where \(A, B, C \in V \) and \(a \in T \).

Theorem: Any CFG \(G \) with \(\lambda \) not in \(L(G) \) has an equivalent grammar in CNF.

Proof:

1. Remove \(\lambda \)-productions, unit productions, and useless productions.

2. For every rhs of length \(> 1 \), replace each terminal \(x_i \) by a new variable \(C_j \) and add the production \(C_j \rightarrow x_i \).

3. Replace every rhs of length \(> 2 \) by a series of productions, each with rhs of length 2. QED.
Example:

\[
S \rightarrow CBcd \\
B \rightarrow b \\
C \rightarrow Cc \mid e
\]
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

$$A \rightarrow ax$$

where $$a \in T$$ and $$x \in V^*$$

Theorem For every CFG $$G$$ with $$\lambda$$ not in $$L(G)$$, $$\exists$$ a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables $$A_1, A_2, \ldots A_n$$
3. Eliminate left recursion and use substitution to get all productions into the form:

\[
A_i \rightarrow A_j x_j, \ j > i \\
Z_i \rightarrow A_j x_j, \ j \leq n \\
A_i \rightarrow ax_i
\]

where \(a \in T \), \(x_i \in V^* \), and \(Z_i \) are new variables introduced for left recursion.

4. All productions with \(A_n \) are in the correct form, \(A_n \rightarrow ax_n \). Use these productions as substitutions to get \(A_{n-1} \) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3} \), etc until all productions are in the correct form.