Parsing

Parsing Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Review

Consider the CFG G:

```
S → Aa
A → AA | ABa | λ
B → BBa | b | λ
```

Is ba in $L(G)$? Running time?

Remove λ-rules, then unit productions, and then useless productions from the grammar G above. New grammar G' is:

```
S → Aa | a
A → AA | ABa | Aa | Ba | a
B → BBa | Ba | a | b
```

Is ba in $L(G)$? Running time?

Top-down Parser:

- Start with S and try to derive the string.

```
S → aS | b
```

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

- Examples: Shift-reduce, Operator-Precedence, LR Parser

We will use the following functions FIRST and FOLLOW to aid in computing parse tables.

The function FIRST:

Some notation that we will use in defining FIRST and FOLLOW.

\[G=(V,T,S,P) \]
\[w,v \in (V \cup T)^* \]
\[a \in T \]
\[X,A,B \in V \]
\[X_I \in (V \cup T)^+ \]

Definition: \(\text{FIRST}(w) = \) the set of terminals that begin strings derived from w.

- If \(w \Rightarrow a \) then \(a \) is in FIRST\((w)\)
- If \(w \Rightarrow \lambda \) then \(\lambda \) is in FIRST\((w)\)

To compute FIRST:

1. \(\text{FIRST}(a) = \{a\} \)
2. \(\text{FIRST}(X) \)

 - If \(X \rightarrow aw \) then \(a \) is in FIRST\((X)\)
 - IF \(X \rightarrow \lambda \) then \(\lambda \) is in FIRST\((X)\)
 - If \(X \rightarrow Aw \) and \(\lambda \in \text{FIRST}(A) \) then Everything in FIRST\((w)\) is in FIRST\((X)\)
3. In general, \(\text{FIRST}(X_1X_2X_3..X_K) = \)

 - \(\text{FIRST}(X_1) \)
 - \(\cup \text{FIRST}(X_2) \) if \(\lambda \) is in \(\text{FIRST}(X_1) \)
 - \(\cup \text{FIRST}(X_3) \) if \(\lambda \) is in \(\text{FIRST}(X_1) \)
 and \(\lambda \) is in \(\text{FIRST}(X_2) \)

 ...

 - \(\cup \text{FIRST}(X_K) \) if \(\lambda \) is in \(\text{FIRST}(X_1) \)
 and \(\lambda \) is in \(\text{FIRST}(X_2) \)
 ... and \(\lambda \) is in \(\text{FIRST}(X_{K-1}) \)
 - \(- \{\lambda\} \) if \(\lambda \not\in \text{FIRST}(X_J) \) for all \(J \)
Example: \(L = \{a^n b^m c^n : n \geq 0, 0 \leq m \leq 1\} \)

\[
\begin{align*}
S & \rightarrow aSc \mid B \\
B & \rightarrow b \mid \lambda
\end{align*}
\]

FIRST(B) =
FIRST(S) =
FIRST(Sc) =

Example

\[
\begin{align*}
S & \rightarrow BCD \mid aD \\
A & \rightarrow CEB \mid aA \\
B & \rightarrow b \mid \lambda \\
C & \rightarrow dB \mid \lambda \\
D & \rightarrow cA \mid \lambda \\
E & \rightarrow e \mid fE
\end{align*}
\]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =

Definition: FOLLOW(X) = set of terminals that can appear to the right of X in some derivation.

If \(S \xrightarrow{\ast} wAav \) then
\(a \) is in FOLLOW(A)

(where \(w \) and \(v \) are strings of terminals and variables, \(a \) is a terminal, and \(A \) is a variable)
To compute FOLLOW:

1. $ is in FOLLOW(S)
2. If $A \rightarrow wBv$ and $v \neq \lambda$ then
 \[\text{FIRST}(v) - \{\lambda\} \text{ is in } \text{FOLLOW}(B) \]
3. IF $A \rightarrow wB$ OR
 $A \rightarrow wBv$ and λ is in FIRST(v) then
 \[\text{FOLLOW}(A) \text{ is in } \text{FOLLOW}(B) \]
4. λ is never in FOLLOW

Example:

\[
S \rightarrow aSc \mid B \\
B \rightarrow b \mid \lambda
\]

FOLLOW(S) =
FOLLOW(B) =

Example:

\[
S \rightarrow BCD \mid aD \\
A \rightarrow CEB \mid aA \\
B \rightarrow b \mid \lambda \\
C \rightarrow dB \mid \lambda \\
D \rightarrow cA \mid \lambda \\
E \rightarrow e \mid fE
\]

FOLLOW(S) =
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
FOLLOW(D) =
FOLLOW(E) =