Deterministic Finite Accepter (or Automata)

A DFA = \((Q, \Sigma, \delta, q_0, F) \)

- \(Q \) is a finite set of states
- \(\Sigma \) is the tape (input) alphabet
- \(q_0 \) is the initial state
- \(F \subseteq Q \) is the set of final states.
- \(\delta: Q \times \Sigma \rightarrow Q \)

Example: Create a DFA that accepts even binary numbers.

Transition Diagram:

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
& a & a & b & b & a & b \\
\hline
q_0 & q_1 \\
\hline
\end{array}
\]

Tabular Format

<table>
<thead>
<tr>
<th>(q_0)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of a move: \(\delta(q_0,1) = \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = \(\delta(q, s) \)
 s = next symbol to the right on tape
if q \in F then accept

Example of a trace: 11010

Pictorial Example of a trace for 100:

1) \(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\end{array} \)

2) \(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\end{array} \)

3) \(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\end{array} \)

4) \(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\end{array} \)

Definition:

\(\delta^*(q, \lambda) = q \)

\(\delta^*(q, wa) = \delta(\delta^*(q, w), a) \)

Definition The language accepted by a DFA \(M=(Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally,

\[L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \} \]
Trap State

Example: \(L(M) = \)

\[
\begin{array}{c}
q_0 \\
\rightarrow \\
b \\
\rightarrow \\
q_1 \\
\rightarrow \\
a \\
\rightarrow \\
q_2 \\
\rightarrow \\
trap \\
\rightarrow \\
a, b \\
\rightarrow \\
q_0 \\
\rightarrow \\
b \\
\rightarrow \\
q_1 \\
\rightarrow \\
a \\
\rightarrow \\
q_2 \\
\rightarrow \\
trap \\
\rightarrow \\
a, b \\
\rightarrow \\
\end{array}
\]

You don’t need to show trap states! Any arc not shown will by default go to a trap state.

Example:

\(L = \{ w \in \Sigma^* \mid w \text{ has an even number of a’s and an even number of b’s} \} \)

Example: Create a DFA that accepts even binary numbers that have an even number of 1’s.

Definition A language is regular iff there exists DFA \(M \) s.t. \(L = L(M) \).
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA = \((Q, \Sigma, \delta, q_0, F)\)

where

- \(Q\) is finite set of states
- \(\Sigma\) is tape (input) alphabet
- \(q_0\) is initial state
- \(F \subseteq Q\) is set of final states.
- \(\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q\)

Example

Note: In this example \(\delta(q_0, a) = \)

Example

\(L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\}\)

Definition \(q_j \in \delta^*(q_i, w)\) if and only if there is a walk from \(q_i\) to \(q_j\) labeled \(w\).

Example From previous example:

\(\delta^*(q_0, ab) = \)

\(\delta^*(q_0, aba) = \)

Definition: For an NFA \(M\), \(L(M) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset\}\)

The language accepted by nfa \(M\) is all strings \(w\) such that there exists a walk labeled \(w\) from the start state to final state.
2.3 NFA vs. DFA: Which is more powerful?

Example:

\[\begin{array}{c}
q_0 & \xrightarrow{a} & q_1 \\
& \xrightarrow{a} & q_2 \\
q_2 & \xrightarrow{b} & q_1 \\
\end{array} \]

Theorem Given an NFA \(M_N = (Q_N, \Sigma, \delta_N, q_0, F_N) \), then there exists a DFA \(M_D = (Q_D, \Sigma, \delta_D, q_0, F_D) \) such that \(L(M_N) = L(M_D) \).

Proof:

We need to define \(M_D \) based on \(M_N \).

\(Q_D = \) \\
\(F_D = \) \\
\(\delta_D : \)

Algorithm to construct \(M_D \)

1. start state is \(\{q_0\} \cup \text{closure}(q_0) \)
2. While can add an edge

 (a) Choose a state \(A = \{q_i, q_j, \ldots q_k\} \) with missing edge for \(a \in \Sigma \)

 (b) Compute \(B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a) \)

 (c) Add state \(B \) if it doesn’t exist

 (d) add edge from \(A \) to \(B \) with label \(a \)
3. Identify final states
4. if \(\lambda \in L(M_N) \) then make the start state final.
Properties and Proving - Problem 1

Consider the property Replace one a with b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with b. If a string does not have an a, then the string is not in R1awb(L).

Example 1: Consider L={aaab,bbaa}
R1awb(L)=

Example 2: Consider Σ = {a,b}, L = {w ∈ Σ* | w has an even number of a’s and an even number of b’s}
R1awb(L)=

Proof:
Properties and Proving - Problem 2

Consider the property \text{Truncate all preceding \textbf{b}'s} or \text{TruncPreb} for short. If \(L \) is a regular, prove \(\text{TruncPreb}(L) \) is regular.

The property \text{TruncPreb} applied to a language \(L \) removes all preceding \textbf{b}'s in each string. If a string does not have a preceding \textbf{b}, then the string is the same in \(\text{TruncPreb}(L) \).

Example 1: Consider \(L = \{aaab, bbba\} \)

\(\text{TruncPreb}(L) = \)

Example 2: Consider \(L = \{(bba)^n \mid n > 0\} \)

\(\text{TruncPreb}(L) = \)

Proof:
Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

$$
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F
$$
$$
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
$$

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

$$
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR }
$$
$$
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
$$
Example:
Example: