This recitation is to review the material from sections 1.6-1.8 and sections 2.1-2.2 in the course textbook as covered in lectures 2 and 3.

1. Prove that for any real numbers x and y, $|x + y| \leq |x| + |y|$. Avoid "obvious" facts about absolute value, and use its definition to derive any facts you need:

$$|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}$$

Solution: First, let’s prove a useful fact: for any x, we have $x \leq |x|$. To see this, consider an arbitrary real number x. There are two cases for x: either $x \geq 0$, or $x < 0$. In the former case, then $x = |x|$ by definition which directly implies (the weaker statement) $x \leq |x|$. In the latter case we have $x < 0 < -x$, and $-x = |x|$ by definition, so $x < |x|$ which directly implies (the weaker statement) $x \leq |x|$. Thus, in either case, we conclude $x \leq |x|$. Since these cases are exhaustive, we conclude $x \leq |x|$ for any real x.

Similarly, we can prove the fact that $-x \leq |x|$ for any real x. Let x be an arbitrary real number. If $x \geq 0$, then $-x \leq x = |x|$ as desired, and if $x < 0$, then $-x = |x|$ so $-x \leq |x|$. Again, these cases are exhaustive, so we conclude $-x \leq |x|$ for any real x.

With these facts in hand, we prove the claim set out. Let x be an arbitrary real number. Applying the definition of absolute value, we have two cases for $x + y$:

(a) Case $x + y \geq 0$: Then $|x + y| = x + y$ by definition. By the fact above, we have $x + y \leq |x| + |y|$ as desired.

(b) Case $x + y < 0$: Then $|x + y| = -(x + y)$ by definition. Rewriting this term, we have $(−x) + (−y)$. By the second fact above, we have $(−x) + (−y) \leq |x| + |y|$ as desired.

Since the proposition is true in each case and the cases are exhaustive, the proposition is true. □

2. Prove that for any positive integer n, n is divisible by 5 if and only if the least significant (rightmost) digit of n is 0 or 5.

Discussion: Since last discussion, there have been questions regarding what is sufficient to prove a non-negative real number n is divisible by a positive integer k. A useful fact that you can use in your own proofs is that for any non-negative integer k and non-negative integers a and b, we have $ka + b$ is divisible by k if and only if b is divisible by k.

For example, recall the term $4k^2 + 4k + 1$ for some positive integer k from the previous recitation. To prove this quantity is not divisible by 4, we can use the fact above: $4k^2 + 4k + 1$ can be written as $4(k^2 + k) + 1$, and since $1 < 4$, we have that $4(k^2 + k) + 1$ is not divisible by 4.

Solution (By chain of if and only ifs): Let n be an arbitrary positive integer, and let y be the least significant (rightmost) digit of n. Then y is a non-negative integer between 0 and 9. We know $n – y$ is divisible by 10, so $n – y = 10x$ for some non-negative integer x, and then n can be expressed as $10x + y$. It follows that n is divisible by 5 if and only if $10x + y$ is divisible by 5. Since $10 = 5 \cdot 2$, we have $n = 5 \cdot 2x + y$. By the fact above, we have $5 \cdot 2x + y$ if and only if y is divisible by 5. Since $0 \leq y < 10$, y is divisible by 5 if and only if y is 0 or 5, which completes the proof. □
Solution (By proof of both implications): Let \(n \) be an arbitrary positive integer that is divisible by 5. Then \(n = 10x + y = 5 \cdot 2x + y \) for some positive integer \(x \) and non-negative integer \(y < 10 \). By the fact above, \(y \) is divisible by 5. Since \(0 \leq y < 10 \), we have \(y \) is either 0 or 5 as desired. This proves that if \(n \) is divisible by 5, then \(y \) is either 0 or 5.

Now assume the last digit \(y \) of \(n \) is 0 or 5. In any case, \(n = 10x + y \) for some non-negative integer \(x \). If \(y = 0 \), then \(n = 10x \) which is divisible by 5. Otherwise, \(y = 5 \) and \(n = 10x + 5 = 5(2x + 1) \) which is divisible by 5. Since these cases are exhaustive, we have that if the last digit of \(n \) is either 0 or 5, then \(n \) is divisible by 5.

Since we have proven both implications, the given proposition is true.

3. Prove that for any positive integer \(n \), \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).

Solution: We will prove the proposition true using the well ordering principle. First, define \(S \) to be the set of all counterexamples to the proposition above; that is, let \(S \) be the set of all positive integers for which

\[
\sum_{i=1}^{n} i \neq \frac{n(n+1)}{2}.
\]

Assume for sake of contradiction that the proposition does not hold for all \(n \), so \(S \) is non-empty. Since \(S \) is a non-empty set of positive integers, the well ordering principle implies there is a smallest integer in \(S \). Let \(k \) be the smallest integer in \(S \). Since \(k \) is in \(S \), we have

\[
\sum_{i=1}^{k} i \neq \frac{k(k+1)}{2}.
\]

Subtracting \(k \) from each side yields:

\[
\sum_{i=1}^{k} i - k \neq \frac{k(k+1)}{2} - k
\]

\[
\Rightarrow \sum_{i=1}^{k-1} i \neq \frac{k}{2} ((k+1) - 2)
\]

\[
\Rightarrow \sum_{i=1}^{k-1} i \neq \frac{(k-1)k}{2}
\]

If \(k - 1 \) is a positive\(^1\) integer, then \(k - 1 \) is a counterexample and is in \(S \). However, \(k - 1 < k \), so \(k - 1 \) is a smaller counterexample than \(k \), which is a contradiction.

In the case that \(k - 1 \) is not positive, then we cannot use the same argument as above. However, in this case, it must be that \(k = 1 \) since \(k \) is positive. Then we observe that the proposition does hold for \(k \); indeed, \(\sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2} \). This implies \(k \) is not in \(S \), but \(k \) is the smallest integer in \(S \) which is a contradiction.

These cases are exhaustive, and in each case we reached a contradiction. Thus, we conclude our assumption that \(S \) is non-empty is false, and thus the given proposition holds for all positive integers \(n \).

\(^1\)Recall that the proposition is only stated for positive integers.
4. Consider the following scenario. There are \(n \) college basketball teams, and every team will play exactly one game against every other team. In each game, exactly one team wins (there are no ties). If team \(a \) wins in a game against team \(b \), we say \(a \) beats \(b \). A cycle of length \(k \) is a sequence \(t_1, t_2, \ldots, t_k \) such that \(t_i \) beats \(t_{i+1} \) for all \(i < k \), and \(t_k \) beats \(t_1 \). In other words, \(t_1 \) beats \(t_2 \), \(t_2 \) beats \(t_3 \), etc., and additionally \(t_k \) beats \(t_1 \). Notice any cycle has length at least three.

Show that for any \(n \) and any outcomes of the games, if there is a cycle of length at least three, then there is a cycle of length exactly three.

Solution: Let \(n \) be an arbitrary positive integer \(n \), and consider arbitrary outcomes of all games. Let \(S \) be the set of lengths of cycles for those outcomes; that is, integer \(k \) is contained in \(S \) if and only if there is a cycle of length \(k \). Since \(S \) contains only positive integers, the well ordering principle implies there is a smallest integer \(k \) in \(S \). If \(k = 3 \), then there is a cycle of length 3, so the proposition holds in this case. Otherwise, \(k > 3 \) (since there are no cycles shorter than length 3). Since \(k \) is in \(S \), there is some cycle of length \(k \): \(t_1, t_2, \ldots, t_k \). There are two cases for the outcome of the game played by teams \(t_1 \) and \(t_3 \):

(a) Case \(t_1 \) beat \(t_3 \): Then \(t_1, t_3, t_4, \ldots, t_k \) is a cycle of length \(k - 1 \), so \(k - 1 \) is in \(S \). However, \(k - 1 < k \) and \(k \) is the smallest integer in \(S \), which is a contradiction. Thus, it must not be the case that \(t_1 \) beat \(t_3 \).

(b) Case \(t_3 \) beat \(t_1 \): Then \(t_1, t_2, t_3 \) is a cycle of length 3.

Since the proposition holds in all cases and the cases are exhaustive, the proposition holds true.

Note: The proof above does not follow the standard "WOP template" as described in section 2.2 of the textbook, but it does invoke the well ordered principle.