Table of Contents

Keynote: Top-down meets Bottom-up/Self-Assembly across Scales

Biomolecular Architectures and Systems for Nanoengineering Solid State Materials 1

Jennifer Cha

Invited: Top-down meets Bottom-up/Self-Assembly across Scales

Nanoscale Origami ... 2

Teena James, Si Young Park and David Gracias

Directed assembly of one-dimensional DNA nanostructures on lithographically patterned surface ... 3

Risheng Wang, Matteo Palma, Erika Penzo and Shalom Wind

Contributed: Top-down meets Bottom-up/Self-Assembly across Scales

Pattern transformation using a DNA-based amorphous computer 4

Steven Chirieleison, Peter Allen, Andrew McIver, Andrew Ellington and Xi Chen

Posters: Top-down meets Bottom-up/Self-Assembly across Scales

Self-assembled Photonic crystals from shear ordered block copolymers 5

Andrew Parnell, Patrick Fairclough and Oleksandr Mykhaylyk

Electrokinetic Feedback Control of Colloidal Crystal Size 6

Jaime Juarez, Pramod Mathai, James Alexander Liddle and Michael Bevan

Sebastian Beyer and Dieter Trau

Deposition of DNA origami on chemically modified graphene 8

Marya Lieberman, Kyoung Nan Kim, Je Moon Yun, Ju Young Kim, Dong Ok Shin, Won Jun Lee, Sun Hwa Lee and Sang Ouk Kim

Keynote: Track on Computational Tools for Self-assembly

Exploring Hollywood’s Tools for Scientific Visualization 9

Campbell Strong and Gael McGill

Invited: Track on Computational Tools for Self-assembly

Bioengineering at the Digital Laboratory Bench 10

Ebbe Andersen, Rasmus Sørensen, Aurélien Tabard, Juan Hincapié-Ramos, Jørgen Kjems and Jakob Bardram

Software tools for automated design of dynamic nucleic acid systems 11

Casey Grun, Justin Werfel, David Yu Zhang and Peng Yin
In Silico Design, In Vitro Characterization and Ex-Vivo Studies of Functional RNA-based Nanoparticles .. 12
Bruce Shapiro

Posters: Track on Computational Tools for Self-assembly

Kissing complexes and pulling simulations of a coarse-grained model for DNA 13
Flavio Romano, Thomas E. Ouldridge, Jonathan P. K. Doye and Ard A. Louis

Holliday Triangle Hunter (HoT Hunter): Efficient Software for Identifying Low Strain DNA Triangular Configurations .. 14
William Sherman

vHelix for Maya – Lattice Free DNA Nanostructure CAD 15
Johan Gardell, Pavan Kumar Areddy and Bjorn Hogberg

A Numeric Secondary Structure Representation Method .. 16
M. Leigh Fanning, Joanne Macdonald and Darko Stefanovic

Keynote: Track on Molecular Motors

Rotation of the rotor-less molecular motor protein ... 17
Hiroyuki Noji

Invited: Track on Molecular Motors

From molecular motors to propelled motion of a four-wheeled molecule 18
Tibor Kudernac

Contributed: Track on Molecular Motors

Controlling motor direction in response to a chemical signal 19
Richard Muscat, Jonathan Bath and Andrew Turberfield

Towards Collective Intelligence in Molecules: Two and three interacting molecular spiders 20
Oleg Semenov, Darko Stefanovic and Milan Stojanovic

Posters: Track on Molecular Motors

Rotary catalysis mechanism of motor protein; F1-ATPase 21
Rikiya Watanabe, Mizue Tanigawara, Hidenobu Arai, Kazuma Koyasu and Hiroyuki Noji

Phase-Field Model of Self-Polarization and Cell Movement 22
Igor Aronson, Falko Ziebert and Sumanth Swaminathan

Coarse-Grained Modelling of a Burnt Bridges DNA Motor 23
Petr Sulc, Alex Lucas, Thomas Ouldridge, Flavio Romano, Ard Louis, Jonathan Doye, Jonathan Bath and Andrew Turberfield

Super-Resolution Tracking of DNA Nanomachines Using Quantum Dots 24
Robert Machinek, Jon Bath and Andrew Turberfield
Table of Contents

Tau Protein Detection in a Molecular Motor System ... 25
 M. C. Tarhan, H. Qiu, R. Yokokawa, S. L. Karsten and H. Fujita

Keynote: Track on DNA Nanostructures I (Tuesday)

Molecular DNA Devices in Living Systems .. 26
 Yamuna Krishnan

Invited: Track on DNA Nanostructures I (Tuesday)

Single-stranded DNA nanotubes: The structure formation mechanisms 27
 Michael Mertig, Philipp Fuchsenberger, Anja Henning, Ofer Wilner and Itamar Willner

A Preliminary Study on Colloidal Crystallization of DNA Motifs 28
 Shogo Hamada and Satoshi Murata

Modular Self-assembly of Molecular Shapes ... 29
 Bryan Wei, Mingjie Dai and Peng Yin

Parallel enzymatic production of thousands of high quality oligonucleotides for
structural DNA nanotechnology ... 30
 Thorsten L Schmidt and William M Shih

Direct visualization of single transcription on the designed DNA nanoscaffold........ 31
 Masayuki Endo, Koich Tatsumi, Kosuke Terushima, Yousuke Katsuda, Kumi Hidaka,
 Yoshie Harada and Hiroshi Sugiyama

Posters: Track on DNA Nanostructures I (Tuesday)

Molecular lithography through DNA-mediated etching of SiO2 32
 Haitao Liu

Strand displacement reaction (SDR) optimization on the solid phase 33
 Hamid Ramezani and D. Jed Harrison

Exploring the assembly of DNA origami nanostructures 34
 Jean-Philippe J. Sobczak, Thomas G. Martin, Thomas Gerling and Hendrik Dietz

A DNA-Based Nanomechanical Device Used to Characterize the Distortion of DNA by
Apo-SoxR Protein .. 35
 Chunhua Liu, Eunsuk Kim, Bruce Demple and Nadrian C. Seeman

DNA nanostructures for biological physics .. 36
 Hendrik Dietz, Fabian Kilchherr, Christian Wachauf, Emanuel Pfitzner, Jonas Funke,
 Matthias Schickinger and Evi Stahl

Kinetics of Quantum Dot-DNA Origami Binding: A Single Particle, 3D Real-Time
Tracking Study .. 37
 Kan Du, Seung Hyeon Ko, J. Alexander Liddle and Andrew Berglund

Modelling the folding of DNA origami .. 38
 Jean Michel Arbona, Elezgaray Juan and Jean Pierre Aimé

Silver atom and strand numbers in fluorescent and dark Ag:DNAs 39
 Danielle Schultz and Elisabeth Gwinn
Global surface functionalization of DNA origami structures with PAMAM dendrimers.

Anne Louise Bank Kodal, Rasmus Scholer Sorensen, Katerina Busuttil, Flemming Besenbacher, Jørgen Kjems and Kurt Gothelf

Manipulating aptamer architectures at the nanoscale.

Chunhua Liu, Michelle Byrom, Peng Yin and Andrew D. Ellington

Shaping Light with DNA-based Self-Assembly.

Crystallization analysis of DNA crystals grown by substrate-assisted growth.

Junwye Lee, Shogo Hamada, Si Un Hwang, Junyoung Son, Rashid Amin, Satoshi Murata and Sung Ha Park

Yield of Nanoparticle Attachment to DNA Origami as a Function of Binding Site Design and Periodicity.

Elton Graugnard, Craig Onodera, Sadao Takabayashi, Nathan Robinson, Hieu Bui, Jeonghoon Lee, Wan Kuang, William Knowlton, Bernard Yurke and William Hughes

pH-responsive non-canonical base pairs for the construction of 3D DNA crystals.

Paul Paukstelis

Programmability of Quadruplex DNA Folding.

Mateus Webba Da Silva and Ioannis Karsisiotis

Keynote: Track on Synthetic Biology

Orthogonal riboswitches as tools for controlling gene expression in bacteria.

Jason Micklefield

Invited: Track on Synthetic Biology

Using Small Molecules to Engineer and Explore Human Immunity.

David Spiegel

Contributed: Track on Synthetic Biology

Template-Guided Size-Selective Sorting and Assembly of Mammalian Cells.

Gunjan Agarwal and Carol Livermore

Posters: Track on Synthetic Biology

Molecular programming with a transcription and translation cell-free system: synthetic coliphages and artificial cell.

Jonghyeon Shin and Vincent Noireaux

Light-Regulation of DNA Logic Gates.

Alex Prokup, James Hemphill and Alex Deiters

Building Enhancers from the Ground Up.

Roee Amit
Functional Microtubule Arrays using DNA-Kinesin Hybrids

Adam Wollman, Carlos Sanchez-Cano, Helen Carstairs, Robert Cross and Andrew Turberfield

53

Reconstructing synthetic cellular compartments on a surface

Roy Bar-Ziv

54

Retroactivity Reduction in Doubly Phosphorylated Competing Cascades

Vishwesh Kulkarni, Pulkit Grover, Marc Riedel and Andrea Goldsmith

55

Keynote: Track on Biomedical Nanotechnology

Smart Nanoreservoirs of therapeutics can Regenerate Tissue

Nadia Benkiran-Jessel

56

Invited: Track on Biomedical Nanotechnology

Scalable Combinatorial DNA Barcodes for Multiplexed Bio-Analytics

Ishan Gupta and Daniel Lubrich

57

Cellular uptake, biodistribution and toxicity of geometrically defined silica and gold nanoparticles

Hamid Ghandehari, Tian Yu, Heather Herd, Adam Gormley and Nate Larson

58

Contributed: Track on Biomedical Nanotechnology

Bacterial Backpacking

Teena James, Mert Karakoy, Chih-Chieh Chan and David Gracias

59

Posters: Track on Biomedical Nanotechnology

Targeting Inaccessible Tumors in the Brain with Viral Nanoparticles

Stephanie Chung, Amy Wen, Christine Debaz, Sourav Dey, Nicole Steinmetz and Ann-Marie Brooome

60

Synthetic Running and Tumbling: An Autonomous Navigation Strategy for
Self-Assembled Catalytic Nanoswimmers

Stephen Ebbens, Gavin Buxton, Alexander Alexeen, Alireza Sadeghi and Jonathan House

61

Chemically Self-Assembled Nanostructures (CSAN’s) for cellular delivery of proteins and nucleic acids

Amit Ganagar, Adrian Fegan, Sidath C. Kumararpperuma and Carston R. Wagner

62

DNA Origami Nanostructures as biocompatible immunostimulative carrier system for
CpG Oligonucleotides

Verena Schüller, Simon Heidegger, Nadja Sandholzer, Philipp Nickels, Nina Suhartha, Stefan Endres, Carole Bourquin and Tim Liedl

63

DNA Templated Protein Modification

Thomas Tørring, Niels V. Voigt, Christian B. Rosen, Anne Louise B. Kodal, Kasper Jahn, Jørgen Kjems and Kurt V. Gothelf

64
Operation of a DNA-Based Nanomachine in Human Serum and Blood 65
Elton Graugnard, Sara Goltry, Jessica Minick, Tyler Clark, Jeunghoon Lee, Bernard Yurke and William Hughes

DNA/polymer hybrid nanostructures for drug delivery and diagnostics 66
Andreas Herrmann

Enzymatic DNA oligonucleotide production ... 67
Cosimo Ducani, Corinna Kaul, Shaun Douglas, William Shih and Bjorn Hogberg

Activation of RNAi with auto-recognizing therapeutic R/DNA chimeric hybrids: A novel approach for biomedical RNA nanotechnology .. 68
Kirill Afonin, Mathias Viard, Stephen Lockett, Luc Jaeger, Robert Blumenthal and Bruce Shapiro

Engineering parameters in synthesis of branched gold nanoparticles 69
Jaeseung Hahn, Daniel Thorek and Jan Grimm

Keynote: Track on Self-assembling Circuit and Device Architectures

Nanomagnet Logic: A New Paradigm in Low-Power Computing Systems 70
Gary Bernstein, Peng Li, Faisal Shah and Mohammad Siddiq

Invited: Track on Self-assembling Circuit and Device Architectures

Programming matter(s): from Turing to Kilby and back to E.Coli 71
Anthony Genot, Jon Bath, Teruo Fuji, Yannick Rondelez and Andrew Turberfield

Plasmid-derived DNA Gates for Implementing Chemical Reaction Networks 72
Georg Seelig

Contributed: Track on Self-assembling Circuit and Device Architectures

Excitonic Waveguides Switchable by DNA Strand Invasion .. 73
Elton Graugnard, Donald Kellis, Hieu Bai, Stephanie Barnes, Wan Kuang, Jeunghoon Lee, William Hughes, William Knowlton and Bernard Yurke

Posters: Track on Self-assembling Circuit and Device Architectures

Laser Remote Sensing enabled by DNA Self-assembly and Resonance Energy Transfer 74
Siyang Wang and Chris Dwyer

3Input Majority Logic Gate and Complex Gate Implementations Based on DNA Strand Displacement .. 75
Wei Li, Yan Liu and Hao Yan

Multilogic Algorithmic Self-Assembly .. 76
Jihoon Shin, Junghoon Kim, Seungjae Kim, Young Hun Kwon and Sung Ha Park

Controlling deoxyribozyme activity by strand displacement reactions 77
Carl W. Brown Iii, Matthew R. Lakin, Steven Graves and Darko Stefanovic

Keynote: Track on Carbon Nanostructures
Controlled Fabrication and Self-assembling of Carbon Nanomaterials for Multifunctional Applications .. 78

 Liming Dai

Invited: Track on Carbon Nanostructures

Unique Thermal Properties of Graphene: Applications in Thermal Management of Advanced Electronics and Optoelectronics 79

 Alexander Balandin

Selective Growth of Enriched Semiconducting Single Walled Carbon Nanotubes 80

 Weiwei Zhou, Shutong Zhan, Lei Ding and Jie Liu

THE MECHANISM OF INTERACTION OF Li+ WITH GRAPHITE, SINGLE-LAYER AND MULTI-LAYER GRAPHENE 81

 Robert Kostecki, Jordi Cabana, Ulrike Boesenberg and Elad Pollak

Posters: Track on Carbon Nanostructures

Biocompatibilization of Diamond Nanoparticles by Controlled Growth of Polymers 82

 Ivan Rehor, Jitka Slegerova, Miroslav Ledvina, Martin Hruby, Hana Mackova, Jan Kucka, Sergey Filippov, Vladimir Proks and Petr Cigler

Boosting the luminiscence of nanodiamonds .. 83

 Jan Havlik, Ivan Rehor, Miroslav Ledvina, Vladimir Petrakova, Vaclav Petrak, Milos Nesladek, Jan Kucka, Jan Ralis, Jan Stursa and Petr Cigler

The pathway to biocompatible fluorescent diamond nanoparticles 84

 Ivan Rehor, Jana Lokajova, Jan Havlik, Jitka Slegerova, Miroslav Ledvina, Sourabh Shukla, Amy Wen, Nicole Steinmetz and Petr Cigler

Pt-NPs/MWNT Nanohybrid as a Robust and Low-cost Counter Electrode Material for Dye-sensitized Solar Cells ... 85

 Van-Duong Dao, Seung Hyeon Ko and Ho-Suk Choi

The Interplay of Temperature and Density in the Synthesis of Carbon Nanotube Forest by Injection Chemical Vapor Deposition 86

 Robert Call, Carlos Read, Cody Mart and T-C Shen

Assembly of a graphene-DNA junction ... 87

 Alfredo Bobadilla and Jorge Seminario

Graphene Nanoribbon Crossbar Array ... 88

 Roger Lake and K. M. Masum Habib

Graphene-on-Diamond Devices with Strongly Enhanced Current-Carrying Capacity: Carbon-on-Carbon Technology 89

 Jie Yu, Guanzxiong Liu, Anirudha Sumant and Alexander Balandin
Disassembly of Self-Assembled DNA-SWNT Hybrids by Interaction with Complementary Biomolecules .. 90

Seungwon Jung, Misun Cha, Jayanti Das, Hanyung Jung, Sangwoong Baek and Junghoon Lee

Invited: Track on DNA Nanostructures II (Wednesday)

Structural DNA Nanotechnology for Nanophotonic Applications 91
Anirban Samanta, Palash Dutta, Suchetan Pal, Zhengtao Deng and Yan Liu

PEGylation of DNA Nanostructures: Synthesis and Characterization 92
Rasmus Schøler Sørensen, Kasper Jahn and Jørgen Kjems

DNA Sudare: a Relaxed DNA Origami Assembly 93
Akinori Kuzuya, Shinya Minamida, Mirai Hashizume and Yuichi Ohya

Enzymatically Produced DNA Nanostructures and Scale-Up Origami 94
Cosimo Ducani, Corinna Kaul, Alan Shaw, Pavan Kumar Areddy, Philipp Nickels,
Tim Liedl, William Shih and Bjorn Hogberg

Posters: Track on DNA Nanostructures II (Wednesday)

Immunostimulatory Properties of Dynamically Stabilized Oligonucleotide Micelles 95
Haipeng Liu and Darrell Irvine

DNA nanostructures for electrophysiology .. 96
Thomas G. Martin, Ruoshan Wei, Martin Langecker, Vera Arnaut, Ulrich Rant,
Friedrich Simmel and Hendrik Dietz

Encapsulation of 3D DNA Nanostructures in Lipid Bilayers 97
Steven Perrault and William Shih

A-motif mediated pH toggled DNA architectures reveal intramolecular conformational dynamics of A-motifs .. 98
Sonali Saha, Yamuna Krishnan, Dhiraj Bhatia and Kasturi Chakraborty

Sub-micrometer Geometrically Encoded Fluorescent Barcodes Self-Assembled from DNA . 99
Chenxiang Lin, Ralf Jungmann, Andrew Leifer, Chao Li, Daniel Levner, William Shih and Peng Yin

DNA-based assembly of plasmonic structures with tailored optical response 100
Anton Kuzyk, Robert Schreiber, Alexander Hoegele, Friedrich C. Simmel, Alexander O. Govorov and Tim Liedl

DNA Origami Nanopores ... 101
Nicholas Bell, Silvia Hernandez-Ainsa, Christian Engst, Tim Liedl and Ulrich Keyser

DNA Gridiron ... 102
Dongran Han, Yan Liu and Hao Yan

Two-Dimensional Self-Assembly and Photo-Cross-Linking Induced Thermal-Stabilization of DNA Origami Structures 103
Arivazhagan Rajendran, Masayuki Endo, Kumi Hidaka and Hiroshi Sugiyama
Table of Contents

Model of DNA Adsorption for Substrate-Assisted Self-Assembly of DNA Nanostructure

Shogo Kudo, Shogo Hamada and Satoshi Murata

Deconstructing DNA Origami: Eliminating the Scaffold

Divita Mathur and Eric Henderson

Light-controlled Catalytic DNA Circuits

Luvena Ong, David Zhang and Peng Ying

Heterogeneous assembly of quantum dots and gold nanoparticles on DNA origami templates

Risheng Wang, Colin Nuckolls and Shalom Wind

2D and 3D DNA Lattices Via Staggered Assembly of the Double-Decker Tile

Nikhil Gopalkrishnan, Harish Chandran and John Reif

Activatable Tiles: Demonstration of Linear and Directed Self Assembly

Harish Chandran, Sudhansha Garg, Nikhil Gopalkrishnan and John H Reif

Study of the ParMRC plasmid partitioning system using DNA origami

Sungwook Woo, Christopher R. Rivera, R. Dyche Mullins and Paul W. K. Rothemund

Different fabrication methods and device applications by DNA lattices

Sung Ha Park, Sreekantha Reddy Dugasani, Rashid Amin, Jeonghun Kim, Jihoon Shin, Junwye Lee, Byeonghoon Kim, Seun Hwang, Junyoung Son, Seungjae Kim and Saima Bashar

Keynote: Track on Principles and Theory of Self-assembly

Emerging temporal patterns from DNA networks

Yannick Rondelez

Invited: Track on Principles and Theory of Self-assembly

Justifying the toehold-length dependence of DNA strand displacement rates

Thomas Ouldridge, Petr Sulc, Niranjan Srinivas, Ard Louis, Jonathan Doye, Erik Winfree, Joseph Schaeffer and Bernard Yurke

Geometric principles for self-folding polyhedra: theory and experiment

Shivendra Pandey, David Gracias and Govind Menon

Posters: Track on Principles and Theory of Self-assembly

Clathrin Self-Assembly is Driven by Membrane Forces

Nicholas Cordella, Thomas Lampo, Shafiqh Mehraneen and Andrew Spakowitz

Implementing arbitrary chemical reaction networks with DNA: a case study

Niranjan Srinivas, David Soloveichik, Erik Winfree and Georg Seelig

Spin Glasses and Tile Self-Assembly

Russell Deaton and Tyler Moore

Keynote: Track on Integrated Chemical Systems
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-assembled Molecular Spheres as Scaffolds for Molecular Integration</td>
<td>118</td>
</tr>
<tr>
<td>Makoto Fujita</td>
<td></td>
</tr>
<tr>
<td>Invited: Track on Integrated Chemical Systems</td>
<td></td>
</tr>
<tr>
<td>Developing Self-Assembled Films of Porphyrins and Ruthenium Complexes for Application in Molecular Devices</td>
<td>119</td>
</tr>
<tr>
<td>Henrique Toma, Sergio Toma, Jonnatan Santos and Koiti Araki</td>
<td></td>
</tr>
<tr>
<td>Programmable One-Pot Multistep Organic Synthesis Using DNA Junctions</td>
<td>120</td>
</tr>
<tr>
<td>Mireya Mckee, Phillip J. Mihnes, Jonathan Bath, Eugen Stulz, Rachel K. O’reilly and Andrew J. Turberfield</td>
<td></td>
</tr>
<tr>
<td>Switching and Cooperative Behaviour of Molecules and Supramolecules at Atomically Clean Surfaces</td>
<td>121</td>
</tr>
<tr>
<td>Thomas Jung</td>
<td></td>
</tr>
<tr>
<td>Keynote: Track on Peptide and Protein Self-assembly</td>
<td></td>
</tr>
<tr>
<td>Using Viral Capsids to Build Integrated Photocatalytic Systems</td>
<td>122</td>
</tr>
<tr>
<td>Matthew Francis</td>
<td></td>
</tr>
<tr>
<td>Invited: Track on Peptide and Protein Self-assembly</td>
<td></td>
</tr>
<tr>
<td>Reconfigurable self-assembly through chiral control of interfacial tension</td>
<td>123</td>
</tr>
<tr>
<td>Zvonimir Dogic</td>
<td></td>
</tr>
<tr>
<td>Contributed: Track on Peptide and Protein Self-assembly</td>
<td></td>
</tr>
<tr>
<td>Functional Polymer-Protein Nanoparticles by Atom Transfer Radical Polymerization from the Surface of Bacteriophage Qeta</td>
<td>124</td>
</tr>
<tr>
<td>Jonathan Pokorski, Kurt Breitenkamp and M.G. Finn</td>
<td></td>
</tr>
<tr>
<td>Recent advances and new challenges in S-layer protein self-assembly</td>
<td>125</td>
</tr>
<tr>
<td>Dietmar Pum, David Schuster and Uwe B. Sleytr</td>
<td></td>
</tr>
<tr>
<td>Posters: Track on Peptide and Protein Self-assembly</td>
<td></td>
</tr>
<tr>
<td>A novel platform technology based on flexible filaments from plant viruses</td>
<td>126</td>
</tr>
<tr>
<td>Sourabh Shukla and Nicole Steinmetz</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering of Brome Mosaic Virus for Biomedical Applications</td>
<td>127</td>
</tr>
<tr>
<td>Ibrahim Yildiz, Irina Tvestkova, Amy Wen, Sourabh Shukla, Bodgan Dragnea and Nicole Steinmetz</td>
<td></td>
</tr>
<tr>
<td>Engineering Viral Nanoparticles for Applications in Medicine: Bio-orthogonal Chemistries to Load the Interior Cavity of VNPs with Drugs and Imaging Moieties</td>
<td>128</td>
</tr>
<tr>
<td>Amy Wen, George Lomonossoff and Nicole Steinmetz</td>
<td></td>
</tr>
<tr>
<td>Keynote: Track on Self-assembled Surface chemistry</td>
<td></td>
</tr>
</tbody>
</table>
Nanomembranes for Time-of-Flight Mass Spectrometry of Proteins 129
\textit{Jonghoo Park, Hyun-Cheol Shin, Hyunseok Kim, Lloyd Smith and Robert Blick}

Invited: Track on Self-assembled Surface chemistry

RNA-Mediated Gene Assembly from DNA Arrays ... 130
\textit{Cheng-Hsien Wu, Matthew R. Lockett and Lloyd M. Smith}

Origami Meets Graphene: Prospects and Perils ... 131
\textit{Masudur Rahman, David Neff and Michael Norton}

Posters: Track on Self-assembled Surface chemistry

Phase separation and vertical stratification in organic polymer photovoltaics 132
\textit{Andrew Parnell, Alan Dunbar and Richard Jones}

Self Assembly of Zinc Oxide Nanoparticle Synthesis at Low Temperature with Co,Ni,
and Mn Dopants ... 133
\textit{Jared Hancock and Roger Harrison}

Adsorbing, Desorbing, and Jamming DNA origami on SAMs 134
\textit{Valerie Goss and Marya Lieberman}

Assembly of Nanoparticles Synthesized Inside a Polyurethane Microreactor by Using a
Micropatterned Polymer Template .. 135
\textit{E. Yegan Erdem, Mike T. Demko, Jim C. Cheng, Fiona M. Doyle and Albert P. Pisano}

A New Approach to Immobilize Single-Walled Carbon Nanotubes (SWCNTs) on Gold
Substrate ... 136
\textit{Jayanti Das and Junghoon Lee}

Enhancing DNA Origami Binding to Graphene via - Interactions 137
\textit{Masudur Rahman and Michael L. Norton}

\textit{Eric Josephs, Gary Abel and Tao Ye}
<table>
<thead>
<tr>
<th>Time</th>
<th>Monday April 16</th>
<th>Tuesday April 17</th>
<th>Wed. April 18</th>
<th>Thurs. April 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just Outside Ballroom:</td>
<td>7:30-8 AM (coffee)</td>
<td>8-9 AM (breakfast)</td>
<td>7:30-8 AM (coffee)</td>
<td>7:30-8 AM (coffee)</td>
</tr>
<tr>
<td>Ballroom: AM Track 1</td>
<td>8-10 AM Registration (breakfast)</td>
<td>9-11 AM DNA nanostructures I</td>
<td>8-9:45 AM Biomedical Nanotechnology</td>
<td>8-9:30 AM Principles and Theory</td>
</tr>
<tr>
<td>Just Outside Ballroom:</td>
<td>No morning poster session</td>
<td>morning poster session: 11 AM-12 PM (n=15) (coffee)</td>
<td>9:45-10:45 AM morning poster session (n=14) (breakfast)</td>
<td>9:30-10:30 AM Poster session D for all Thursday posters (n=13) and 7 DNA nanostructure posters (total n=20) (breakfast)</td>
</tr>
<tr>
<td>Ballroom: AM Track 2</td>
<td>10 AM-12 PM Top-down/Bottom up and Across Scales</td>
<td>10:45 PM -12:30 PM Architectures</td>
<td>10:30 AM – 12:30 PM Peptide/protein assembly</td>
<td>12:30 PM – 1 PM Lunch on your own</td>
</tr>
<tr>
<td>Golden Eagle Room:</td>
<td>12-1 PM Lunch</td>
<td>12-1 PM Lunch</td>
<td>12:30-1:30 PM Lunch</td>
<td>12:30 PM – 1 PM Lunch on your own</td>
</tr>
<tr>
<td>Ballroom: PM Track 1</td>
<td>1-3 PM Computational Tools</td>
<td>1-2:30 PM DNA nanostructures I</td>
<td>1:30-3:30 PM Carbon Nanostructures</td>
<td>1-3PM Integrated Chemical Systems</td>
</tr>
<tr>
<td>Just Outside Ballroom:</td>
<td>3-4 PM Poster session for all Monday posters (n=13) (refreshments)</td>
<td>2:30-3:30 PM Poster session for Syn Bio (N=6) (refreshments)</td>
<td>3:30-4:30 PM poster session (n=19) (refreshments)</td>
<td>3-3:15 PM (refreshments)</td>
</tr>
<tr>
<td>Ballroom: PM Track 2</td>
<td>4-6 PM Molecular Motors</td>
<td>3:30-5:30 PM Synthetic Biology</td>
<td>4:30-6 PM DNA Nanostructures II</td>
<td>3:15-5:15 PM Surfaces</td>
</tr>
<tr>
<td>Evening</td>
<td>6-6:40 PM High-speed AFM workshop</td>
<td>6-7:30 PM Track chair dinner</td>
<td>6-6:40 PM</td>
<td></td>
</tr>
<tr>
<td>Golden Eagle Room: 8-9 PM poster sessions & 9 PM blitz presentations</td>
<td>8-9 PM Poster session A & Sushi reception</td>
<td>8-9 PM Poster session B & Reception</td>
<td>8-9 PM Poster session C & Reception</td>
<td>9-9:30 PM Poster blitz session (n=33) Reception and Poster Session C</td>
</tr>
</tbody>
</table>