Welcome to
CompSci 116:
Foundations of Data Science

Jeff Forbes
January 10, 2019
Plan For The Day (PFTD)

• Be able to articulate whether FoDS is the right course for you, in terms of being able to complete it with understanding

• Be able to describe what data science is and what the implications are of the work of data scientists

• Be able to explain what work is expected: in-class team work, homework, projects, and exams
Acknowledgements

• Adaption of Data 8
 • Ani Adhikari, John DeNero, and David Wagner + a lot of staff at the University of California, Berkeley.
 • Materials used with permission

• NAS Report on Envisioning the Data Science Discipline

• Slides from Mike Franklin & Data Science in the 21st Century at CRA Snowbird 2016

• Thanks to Mine Cetinkaya-Rundel, Kristin Stephens-Martinez, Max Bartlett, & Jose San-Martin
Who am I?

Who are you?

What is Data Science?

• From the ACM Taskforce on Data Science Curricula

• Draws from many different disciplines
What is Data Science?

• From Drew Conway

• Skill-based
What is Data Science?

- From Joel Grus
- Don’t use data science for evil
Applications of Data Science

- **Medicine**: Melanoma detection
 - [Codella et al 2017]
- **Business**: [Amazon], [Facebook]
- **Smart Cities**: [Image of skin lesions]

What applications of data science interest you?
What does a data scientist do?

• From Peter Skomoroch

• The Best Job in America for the past three years?

• A global shortage in data scientists?

• Lots of buzz and buzzwords?
Ethical & Social Implications of Data

• **Fairness**
 - Consider *equity* and avoid *bias* that may be inherent in data sets
 - **Example**: Sentencing practices for criminal justice

• **Validity**
 - Data set should contain accurate and relevant information. Context matters!
 - **Example**: Survivor bias in analyzing STEM degree production

• **Data confidence**
 - Don’t draw stronger-than-appropriate conclusions
 - **Example**: Stock market predictions

• **Privacy**
 - Must be good stewards of data
 - Consider how data is *collected* and *analyzed*
Latanya Sweeney

- Prof. Government and Technology @ Harvard
- Former CTO of the FTC

I am a computer scientist with a long history of weaving technology and policy together to remove stakeholder barriers to technology adoption. My focus is on "computational policy" and I term myself a "computer (cross) policy" scientist. I have enjoyed success at creating technology that weaves with policy to resolve real-world technology-privacy clashes.

http://latanyasweeney.org/

- k-Anonymity: each subject cannot be distinguished from at least $k-1$ others
- Identify 87% of US population using (dob, zip, gender).
What is Foundations of Data Science?

Drawing *useful* conclusions from data using computation

- **Exploration**
 - Identifying patterns in information
 - Uses *visualizations*
- **Inference**
 - Quantifying whether those patterns are reliable
 - Uses *randomization*
- **Prediction**
 - Making informed guesses
 - Uses *machine learning*
Course Details

- https://www.cs.duke.edu/courses/compsci116/spring19/
- Thursdays: Active Lecture
 - Reading assigned
- Tuesdays: Team-Based Learning in Lab
- Midterm Exams: 2/19 & 4/18
- Weekly Homework: Discuss with your team but submit individually
- 3 Projects: Work in pairs
- Final Project: Work in pairs – Present on 5/3
Team-Based Learning

• Why?
 • Facilitate collaboration
 • Problem solving accompanied by group interaction promotes learning

• Do reading outside of class

• Readiness Assurance
 1. Individual
 2. Team

• Application-focused Exercise

• End of Semester: Peer Evaluation
How will you learn?

• Learn by doing
 • Learn computing concepts by doing interesting things on data
 • Learn statistical concepts by observing what’s interesting
 • Learn domain knowledge just in time

• Minimal setup: Jupyter Notebooks (https://jupyterhub.cs.duke.edu)
Is FoDS the right course for you?

• Yes if:
 • You’re interested in gaining quantitative (QS) or computational skills.
 • You want to understand and develop points of view based on the analysis of data as well as evaluate arguments made by others

• Probably not if:
 • You’ve already taken a number of computer science and statistics courses. CompSci 216 – Everything Data may be more appropriate?
 • You’ve already taken Stat 199
 • Want a course that satisfies an elective requirement for Stats or CompSci

• Ask me!
What’s next?

• Review [Chapter 1](#) of *Computational and Inferential Thinking*

• Tell a friend
 • There’s still space!