CompSci 190: Testing Hypotheses

Jeff Forbes

October 31, 2018
Sampling

- **Probability**: Compute what will happen when you run an experiment

- **Statistics**: Look at the outcome of the experiment and try to reason about the world

- **Sampling**: Take the outcome of an experiment and use the rules of probability to reason about how it might have come out differently
Estimation

Statistical Inference:
Making conclusions based on data in random samples

Example:
Use the data to guess the value of an unknown number

depends on the random sample

Create an estimate of the unknown quantity
Terminology

Parameter
 A number associated with the population

Statistic
 A number calculated from the sample

A statistic can be used as an estimate of a parameter

(Demo)
How do we test a hypothesis?

• Chocolate has no effect on cardiac disease.
• Yes, chocolate has some effect on cardiac disease.

• This jury panel was selected at random from eligible jurors.
• No, it has too many people with college degrees.

• Create a model for our set of assumptions about the data
How do we assess a model?

• Simulate data according to the assumptions of the model
 • Learn what the model predicts.

• Compare the predictions to the data that were observed.

• If the data and the model’s predictions are not consistent, that is evidence against the model.
Robert Swain v. Alabama

1965 Supreme Court case about jury selection
- In Talladega, Alabama, 26% of residents were black
- In Swain's jury panel, 8 of 100 panelists were black
- All 8 were struck from the jury by the prosecution (using peremptory challenges)

Ruling: "The overall percentage disparity has been small and reflects no studied attempt to include or exclude a specified number of [black men]."
Section 197 of California's Code of Civil Procedure: All persons selected for jury service shall be selected at random, from a source or sources inclusive of a representative cross section of the population of the area served by the court.

Sixth Amendment to the US Constitution: … the accused shall enjoy the right to a speedy and public trial, by an impartial jury of the state and district wherein the crime shall have been committed.
Sampling from a Distribution

- Sample at random from a categorical distribution

  ```python
  sample_proportions(sample_size, pop_distribution)
  ```

- Samples at random from the population
 - Returns an array containing the distribution of the categories in the sample
Perfect information

- You want to know how many US voters support a particular policy.
- You could ask everyone. That works.
- But, sometimes we can't afford to do that. So, instead, we could ask some of them, and draw inferences about the general population.
A common scenario

- You have to make a decision based on incomplete information.
- The quality of your decision is affected by
 - the information that you have
 - the information that you don’t have
- So, before making the decision, it is worth examining why and how your information came to be incomplete.
Terminology

- **Population**: A collection of individuals
 - All United flights out of SFO in Summer 2015

- **Variable**: Something that varies in the population
 - airline *(categorical variable)*
 - amount of delay in departure *(quantitative variable)*

- **Sample**: A subset of the population
Why take a sample?

- You want to understand the variable in the population, but
- you don’t have the resources to measure the variable on all the individuals in the population, so
- you just measure it on a subset of them.
“Tickets in a box”

population

sample
Best way to draw the sample

At random!
Two distributions

distribution of the population

empirical distribution of a sample
Why sample at random?

The empirical distribution of a large random sample is very likely to be close to the distribution of the population. That’s why.
The effect of sample size

- Larger random samples are more likely to resemble the population than smaller ones.

- However, if the method of sampling is not random, taking a larger sample isn’t necessarily better.
 - You could just end up with a big bad sample.
More terminology

- **Parameter**: A number calculated using the values in the population
 - Median delay among all flights
 - Proportion of voters who are Republican

- **Statistic**: A number calculated using the values in a sample

- A statistic can be used as an estimate of a parameter.
randomly sample

median = 2.0

median = -0.5

median = 9.5
HW5: Gary’s Game

- Flip a fair (?) coin 10 times
 - If number of heads ≥ 5, we win
 - Else Gary wins

- Play the game once
 - There’s one head
 - Was the game rigged?

If you have the entire population...

- Formulate a question you want to answer (a parameter of the population).
- Visualize the data (the population).
- Compute the answer.
- Interpret the results, and explain them in language without statistical jargon.
If you don't...

- Formulate a question you want to answer (a parameter of the population).
- Select a method of inference.
- Visualize the data (the sample).
- Calculate the statistic on your sample, then apply the method to estimate the population parameter.
- Interpret the results, and explain them in language without statistical jargon.