Complementary slackness

- if \(a^T x \geq b \) is a primal constraint, and \(y \) is the corresponding dual variable, then for any pair of optimal solutions, \(y (a^T x - b) = 0 \)

- if \(a^T x > b \) (primal constraint is not tight) then
 \(y = 0 \) (dual variable = 0)

- if \(y > 0 \) (dual variable positive) then
 \(a^T x = b \) (primal constraint is tight)

Simplex algorithm

- Basic feasible solution
 - a basic feasible solution of a linear program with \(n \) variables is a feasible solution equal to the solution of a system of \(n \) linear equations where each equation is a tight constraint.

- Relies on convexity

A linear program has \(n \) variables \(m \) constraints \((m \geq n)\)

A basic feasible solution is a feasible solution where \(n \) out of \(m \) constraints are set to equalities.

Ellipsoid algorithm
- separation oracle: given a candidate solution (assignment of x)
decide x is feasible or output a constraint which x violates.

- LP for min spanning tree

 x_{ij} variable for edge ij, $x_{ij} = \begin{cases} 1 & \text{if } (i,j) \text{ is in } \mathcal{A} \\ 0 & \text{otherwise} \end{cases}$

 $0 \leq x_{ij} \leq 1$

 for every cut C, $\sum_{(i,j) \in C} x_{ij} \geq 1$

- interior point

 - barrier function

 $x \geq 0 \Rightarrow \left\{ \begin{array}{ll}
 \frac{1}{x} & \mbox{if } x \neq 0 \\
 \frac{1}{e^x - 1} & \mbox{if } x = 0
 \end{array} \right.$

 $1 - x - y \geq 0 \Rightarrow \left\{ \begin{array}{ll}
 \frac{1}{1 - x - y} & \mbox{if } 1 - x - y > 0 \\
 \frac{1}{e^{1-x-y} - 1} & \mbox{if } 1 - x - y = 0
 \end{array} \right.$