Lecture 12 Shortest Paths

Tuesday, February 26, 2019

1. \(S \rightarrow t \) shortest path: find a path from \(S \) to \(t \) that has minimum length.

2. Single source shortest path: Given a source \(S \), find shortest path from \(S \) to all other vertices.

3. All pairs shortest path: find the shortest path between any pair of points.

- Dynamic Programming Structure
 - Let \(d[i,j] \) be the length of shortest path from \(S + i \) to \(S + j \).

 \[
 d[i,j] = \min_{(u,v) \in E} \{ d[i,u] + w(u,v) \}
 \]

 \[
 d[S] = 0 \quad d[S,a] = 5 \quad d[S,b] = 6 \quad d[S,c] = 7
 \]

 \[
 d[S,t] = \min \left\{ \begin{array}{l}
 d[S,a] + w(a,t) \\
 d[S,b] + w(b,t) \\
 d[S,c] + w(c,t)
 \end{array} \right\}
 \]

- Greedy fails

- Fixing the cycle problem

 \[
 d[i,v] = \min_{(u,v) \in E} \{ d[i,u] + w(u,v) \}
 \]

 \[
 d[i,u] < d[i,v] \]

- Dijkstra's Algorithm
- Dijkstra's Algorithm
 - mark a vertex u to be visited if we know the shortest path from s to u.
 - maintain $\text{dis}[u]$: shortest path from s to u that only uses visited vertices as intermediate points.

- every step, pick the vertex that has not been visited and has the smallest $\text{dis}[u]$.
 - claim: $\text{dis}[u] = d[\text{Cu}]$
 - mark u as visited
 - update $\text{dis}[]$ accordingly.

- Proof of correctness for Dijkstra
 - Induction Hypothesis:
 at i-th iteration, know shortest path to i visited vertices $\text{dis}[u]$ for any vertex u is maintained correctly.
- Base Case.
 Initially, know shortest path to s, s is only visited vertex
 \[\text{dist}(u) = w(s,u) \text{ if } (s,u) \in E \]
 \[\text{dist}(u) = +\infty \text{ if } (s,u) \notin E \]

- Induction: suppose IH is true for iteration i
 - Let u be the vertex with smallest $\text{dist}(u)$ in this iteration
 - Claim: $d(u) = \text{dist}(u)$

- Proof: assume $d(u) < \text{dist}(u)$
 there exists another path from
 \overline{s} to u with shorter distance.
 By definition of $\text{dist}(u)$, this alternative
 path must have used some intermediate
 vertex that has not been visited.
 - Let v be the first vertex on the path that is not visited.
 the length of path from $s \to u$ is at least $\text{dist}(v)$

 \[
 \text{total length of path} \geq \text{dist}(v) + d(u, v) \\
 \geq \text{dist}(v) \geq 0
 \]
 contradiction. There cannot be a shorter path.
 - still need to prove $\text{dist}(v)$ are maintained correctly

- Running time
 - Naive implementation: implement $\text{dist}[]$ as an array
 finding smallest element $O(n) \times n$
 update $\text{dist}[]$ $O(1) \times m$
total \quad O(n^2 + m) = O(n^2)

- use a binary heap for $\text{dis}[]$
 - finding smallest element \quad $O(\log n) 	imes n$
 - update $\text{dis}[]$ \quad $O(\log n) \times m$
 - total \quad $O(n\log n + m\log n) = O(m\log n)$ if graph is connected.

- use a Fibonacci heap for $\text{dis}[]$
 - finding smallest element \quad $O(\log n) \quad n$
 - update $\text{dis}[]$ \quad $O(1) \quad m$
 - (dis values can only decrease)
 - total \quad $O(n\log n + m)$