Section: Decidability

Computability A function f with domain D is *computable* if there exists some TM M such that M computes f for all values in its domain.

Decidability A problem is *decidable* if there exists a TM that can answer yes or no to every statement in the domain of the problem.
The Halting Problem

Domain: set of all TMs and all strings w.

Question: Given coding of M and w, does M halt on w?
Theorem The halting problem is undecidable.

Proof: (by contradiction)

- Assume there is a TM H (or algorithm) that solves this problem. TM H has 2 final states, q_y represents yes and q_n represents no.

\[
H(w_M, w) = \begin{cases}
\text{halts } q_y & \text{if } M \text{ halts on } w \\
\text{halts } q_n & \text{if } M \text{ doesn't halt on } w
\end{cases}
\]

TM H always halts in a final state.
Construct TM H' from H

$$H'(w_M, w) = \begin{cases}
\text{halts} & \text{if } M \text{ not halt on } w \\
\text{not halt} & \text{if } M \text{ halts on } w
\end{cases}$$

Construct TM \hat{H} from H'

$$\hat{H}(w_M) = \begin{cases}
\text{halts} & \text{if } M \text{ not halt on } w_M \\
\text{not halt} & \text{if } M \text{ halts on } w_M
\end{cases}$$

Note that \hat{H} is a TM.

There is some encoding of it, say $\hat{w}_\hat{H}$.

What happens if we run \hat{H} with input $\hat{w}_\hat{H}$?

$\hat{H}(\hat{w}_\hat{H})$ halts if \hat{H} doesn't halt on $\hat{w}_\hat{H}$

\hat{H} halts on w_M if \hat{H} halts on w_M

\Rightarrow problem is undecidable.
Theorem If the halting problem were decidable, then every recursively enumerable language would be recursive. Thus, the halting problem is undecidable.

- **Proof:** Let L be an RE language over Σ.
 Let M be the TM such that $L=L(M)$.
 Let H be the TM that solves the halting problem.

Calculate $H(wm,w)$

- If H says no, w is not in L
- If H says yes, apply M to w, M should halt, tell us if w is in L or not

\Rightarrow can determine if w is in L
\Rightarrow L is recursive, or not
\Rightarrow every RE language is recursive
A problem A is *reduced* to problem B if the decidability of B follows from the decidability of A. Then if we know B is undecidable, then A must be undecidable.
State-entry problem

Given TM $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$, state $q \in Q$, and string $w \in \Sigma^*$, is state q ever entered when M is applied to w?

This is an undecidable problem!

- Proof:

 TM E solves state-entry problem

 $E'(w_M, w) = \begin{cases}
 M \text{ halts on } w & \text{if } \text{?} \\
 M \text{ doesn't halt on } w & \text{if } \text{?}
 \end{cases}$
modify whenever \(S \) is not defined for some state \(q_i \) and symbol \(a \) add \(S(q_i, a) = (q_1a, R) \)

\(q_f \) is a new state that is the only final state.
the halting problem is undecidable