Section: Regular Languages

Regular Expressions

Method to represent strings in a language

+ union (or)
 ○ concatenation (AND) (can omit)
 * star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^* = (a+b)^* a (a+b)^*\]

Strings over \(\Sigma\) that contain at least one \(a\)

Example:

\[(aa)^*\]

Strings just an even number of \(a's\)
Definition Given Σ,

1. \emptyset, λ, $a \in \Sigma$ are R.E.

2. If r and s are R.E. then
 - $r + s$ is R.E.
 - rs is R.E.
 - $\langle r \rangle$ is a R.E.
 - r^* is R.E.

3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).
Definition: $L(r) = \text{language denoted by R.E. } r$.

1. \emptyset, $\{\lambda\}$, $\{a\}$ are L denoted by a R.E.

2. if r and s are R.E. then
 (a) $L(r+s) = L(r) \cup L(s)$
 (b) $L(rs) = L(r) \circ L(s)$
 (c) $L((r)) = L(r)$
 (d) $L((r)^*) = (L(r)^*)$
Precedence Rules

* highest
°
+

Example:

\[ab^* + c = (\alpha (b)^*) + \gamma \]
Examples:

1. $\Sigma = \{a, b\}, \{w \in \Sigma^* | w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\}.

 $a(aa)^*(bb)^*$

2. $\Sigma = \{a, b\}, \{w \in \Sigma^* | w \text{ has no more than } 3 \text{ } a\text{'s and must end in } ab\}$.

3. Regular expression for all integers (including negative)

 $b^* (a+\lambda)^* (b+\lambda)^* ab$

 $b^* (ab^* + ab^*ab^* + \lambda) ab$

 $\left(0 + (-+\lambda) \left(0+1+2+\ldots+9\right) \right)^*$

 $0 + (-+\lambda) \left(1+2+\ldots+9\right) \left(0+1+2+\ldots+9\right)^*$
Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then \exists NFA M s.t. $L(M) = L(r)$.

- Proof:

\emptyset

$\{\lambda\}$

$\{a\}$

Suppose r and s are R.E.

1. $r+s$

2. $r \circ s$

3. r^*
Example

\(ab^* + c \)

Did in JFLAP
Theorem Let L be regular. Then \exists R.E. r s.t. $L=L(r)$.

Proof Idea: remove states successively until two states left

- Proof:
 - L is regular
 - $\Rightarrow \exists$

1. Assume M has one final state and $q_0 \notin F$

2. Convert to a generalized transition graph (GTG), all possible edges are present.
 If no edge, label with
 Let r_{ij} stand for label of the edge from q_i to q_j
3. If the GTG has only two states, then it has the following form:

\[r_{ii} \quad r_{ji} \quad r_{jj} \]

In this case the regular expression is:

\[r = (r_{ii}^*r_{ij}r_{jj}^*r_{ji})^*r_{ii}^*r_{ij}r_{jj}^* \]
4. If the GTG has three states then it must have the following form:
<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}^{*}r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}^{*}r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^{*}r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^{*}r_{ki}$</td>
</tr>
</tbody>
</table>

remove state q_k
5. If the GTG has four or more states, pick a state \(q_k \) to be removed (not initial or final state).

For all \(o \neq k, p \neq k \) use the rule \(r_{op} \) replaced with \(r_{op} + r_{ok}r_{kk}^*r_{kp} \) with different values of \(o \) and \(p \).

When done, remove \(q_k \) and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions \(r \) and \(s \) with:

\[
\begin{align*}
 r + r &= r \\
 s + r^* s &= \\
 r + \emptyset &= \\
 r\emptyset &= \\
 \emptyset^* &= \\
 r\lambda &= \\
 (\lambda + r)^* &= \\
 (\lambda + r)r^* &= \\
\end{align*}
\]

and similar rules.
Example:
Grammar $G = (V, T, S, P)$

V variables (nonterminals)
T terminals
S start symbol
P productions

Right-linear grammar:

all productions of form

$A \to xB$
$A \to x$

where $A, B \in V$, $x \in T^*$
Left-linear grammar:

all productions of form
\[A \rightarrow Bx \]
\[A \rightarrow x \]
where \(A, B \in V, x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a, b\}, S, P), \quad P = \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]
Example 2:

\[G = (\{S, B\}, \{a, b\}, S, P), \ P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Theorem: L is a regular language iff ∃ regular grammar G s.t. L=L(G).

Outline of proof:

(⇐) Given a regular grammar G
Construct NFA M
Show L(G)=L(M)

(⇒) Given a regular language
∃ DFA M s.t. L=L(M)
Construct reg. grammar G
Show L(G) = L(M)
Proof of Theorem:

(\iff) Given a regular grammar \(G\)
\[G = (V, T, S, P) \]
\[V = \{V_0, V_1, \ldots, V_y\} \]
\[T = \{v_o, v_1, \ldots, v_z\} \]
\[S = V_0 \]

Assume \(G\) is right-linear
(see book for left-linear case).

Construct NFA \(M\) s.t. \(L(G) = L(M)\)

If \(w \in L(G)\), \(w = v_1v_2 \ldots v_k\)
\[M = (V \cup \{ V_f \}, T, \delta, V_0, \{ V_f \}) \]

\(V_0 \) is the start (initial) state

For each production, \(V_i \rightarrow aV_j \),

For each production, \(V_i \rightarrow a \),

Show \(L(G) = L(M) \)

Thus, given R.G. G,

\(L(G) \) is regular
\((\implies\implies)\) Given a regular language \(L\)
\[\exists \text{DFA } M \text{ s.t. } L = L(M)\]
\[M = (Q, \Sigma, \delta, q_0, F)\]
\[Q = \{q_0, q_1, \ldots, q_n\}\]
\[\Sigma = \{a_1, a_2, \ldots, a_m\}\]

Construct R.G. \(G\) s.t. \(L(G) = L(M)\)
\[G = (Q, \Sigma, q_0, P)\]

if \(\delta(q_i, a_j) = q_k\) then

if \(q_k \in F\) then

Show \(w \in L(M) \iff w \in L(G)\)
Thus, \(L(G) = L(M)\).
QED.
Example

\[G = (\{S, B\}, \{a, b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Example: