Section: Other Models of Turing Machines

Definition: Two automata are equivalent if they accept the same language.

Turing Machines with Stay Option

Modify δ, $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R,S\}$

Theorem Class of standard TM’s is equivalent to class of TM’s with stay option.

Proof:

• (\Rightarrow): Given a standard TM M, then there exists a TM M' with stay option such that $L(M) = L(M')$.

 easy
• (\iff): Given a TM M with stay option, construct a standard TM M' such that $L(M) = L(M')$.

$M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

$M' = (Q', \Sigma, \Gamma, \delta', q'_0, B, F')$

For each transition in M with a move (L or R) put the transition in M'. So, for

$$\delta(q_i, a) = (q_j, b, \text{L or R})$$

put into δ'

For each transition in M with S (stay-option), move right and move left. So for

$$\delta(q_i, a) = (q_j, b, \text{S})$$

$L(M) = L(M')$. QED.
Definition: A *multiple track* TM divides each cell of the tape into k cells, for some constant k.

A 3-track TM:

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A multiple track TM starts with the input on the first track, all other tracks are blank.

\[
\delta: Q \times (\Gamma \times \Gamma \times \Gamma) \rightarrow Q \times (\Gamma \times \Gamma \times \Gamma) \times \{L, R\}
\]
Theorem Class of standard TM’s is equivalent to class of TM’s with multiple tracks.

Proof: (sketch)

- \((\Rightarrow)\): Given standard TM M there exists a TM M’ with multiple tracks such that \(L(M)=L(M’)\).

 \[
 \text{just use one track.}
 \]

- \((\Leftarrow)\): Given a TM M with multiple tracks there exists a standard TM M’ such that \(L(M)=L(M’)\).
Definition: A TM with a semi-infinite tape is a standard TM with a left boundary.

Theorem Class of standard TM’s is equivalent to class of TM’s with semi-infinite tapes.

Proof: (sketch)

• \((\Rightarrow)\): Given standard TM \(M\) there exists a TM \(M'\) with semi-infinite tape such that \(L(M) = L(M')\).
 Given \(M\), construct a 2-track semi-infinite TM \(M'\)
(⇐): Given a TM M with semi-infinite tape there exists a standard TM M' such that $L(M) = L(M')$.

```
   TM M
   ...
   ...
   a | b | c | ...
   ^

   TM M'
   # | a | b | c | ...
   #

   right half
   left half
```

Easy
Definition: An Multitape Turing Machine is a standard TM with multiple (a finite number) read/write tapes.

For an n-tape TM, define δ:

\[
\delta: Q \times \Gamma^n \rightarrow Q \times \Gamma^n \times \mathbb{N}^3
\]
Theorem Class of Multitape TM’s is equivalent to class of standard TM’s.

Proof: (sketch)

- \((\Leftarrow)\): Given standard TM \(M\), construct a multitape TM \(M'\) such that \(L(M) = L(M')\).

\[\text{Easy! just use me tape}\]

- \((\Rightarrow)\): Given \(n\)-tape TM \(M\) construct a standard TM \(M'\) such that \(L(M) = L(M')\).

3-tape \(\rightarrow\) 6-track TM

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

\[\uparrow\]
Definition: An Off-Line Turing Machine is a standard TM with 2 tapes: a read-only input tape and a read/write output tape.

Define δ:

\[
\begin{array}{ccc}
| & a & b & c & | \\
| \downarrow | & | & | & |
\end{array}
\]

input tape (read only)

Control Unit

\[
\begin{array}{ccc}
| & b & b & d & | \\
| \downarrow | & | & | & |
\end{array}
\]

read/write tape

$\delta: \mathit{Q} \times \Sigma \rightarrow \mathit{Q} \times \Gamma \times \mathit{L} \cup \mathit{R}$
Theorem Class of standard TM’s is equivalent to class of Off-line TM’s.

Proof: (sketch)

- \((\Rightarrow)\): Given standard TM \(M\) there exists an off-line TM \(M'\) such that \(L(M) = L(M')\).

- \((\Leftarrow)\): Given an off-line TM \(M\) there exists a standard TM \(M'\) such that \(L(M) = L(M')\).
Running Time of Turing Machines

Example:

Given \(L = \{a^n b^n c^n \mid n > 0 \} \). Given \(w \in \Sigma^* \), is \(w \) in \(L \)?

Write a 3-tape TM for this problem.

\[
\text{Input: on tape 1} \\
\text{Copy b's to tape 2} \\
\text{Copy c's to tape 3} \\
\text{Reset tape heads to beginning} \\
\text{Mark a, b, c at same time} \\
\Theta(n)
\]
Definition: An
Multidimensional-tape Turing Machine is a standard TM with a multidimensional tape

Define δ: $Q \times \Gamma \rightarrow Q \times \Gamma \times \{R, L, U, D\}$
Theorem Class of standard TM’s is equivalent to class of 2-dimensional-tape TM’s.

Proof: (sketch)

• (\Rightarrow): Given standard TM M, construct a 2-dim-tape TM M’ such that $L(M) = L(M')$.

• (\Leftarrow): Given 2-dim tape TM M, construct a standard TM M’ such that $L(M) = L(M')$.

Easily
Construct M'

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>a</th>
<th>#</th>
<th>b</th>
<th>#</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>1</td>
<td>#</td>
<td>1</td>
<td>#</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

-2,1 -1,1 a 1,1 b 2,1 c 3,1
-2,-1 -1,-1 1,-1 2,-1
Definition: A *nondeterministic* Turing machine is a standard TM in which the range of the transition function is a set of possible transitions.

Define δ:

Theorem Class of deterministic TM’s is equivalent to class of nondeterministic TM’s.

Proof: (sketch)

- (\Rightarrow): Given deterministic TM M, construct a nondeterministic TM M' such that $L(M) = L(M')$.

- (\Leftarrow): Given nondeterministic TM M, construct a deterministic TM M' such that $L(M) = L(M')$. Construct M' to be a 2-dim tape TM.
A step consists of making one move for each of the current machines.
For example: Consider the following transition:

$$\delta(q_0, a) = \{(q_1, b, R), (q_2, a, L), (q_1, c, R)\}$$

Being in state q_0 with input abc.
The one move has three choices, so 2 additional machines are started.

<table>
<thead>
<tr>
<th>#</th>
<th>#</th>
<th>#</th>
<th>#</th>
<th>#</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td>q1</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>q2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td>q1</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

...
Definition: A 2-stack NPDA is an NPDA with 2 stacks.

Define δ: $Q \times \Sigma \times (2^{\text{stack 1}} \times 2^{\text{stack 2}}) \rightarrow 2^Q \times \{a, b\}^*$
Consider the following languages which could not be accepted by an NPDA.

1. \(L = \{ a^n b^n c^n | n > 0 \} \)
2. \(L = \{ a^n b^n a^n b^n | n > 0 \} \)
3. \(L = \{ w \in \Sigma^* | \text{number of } a\text{'s equals number of } b\text{'s equals number of } c\text{'s} \} \), \(\Sigma = \{ a, b, c \} \)
Theorem Class of 2-stack NPDA’s is equivalent to class of standard TM’s.

Proof: (sketch)

• (\Rightarrow): Given 2-stack NPDA, construct a 3-tape TM M' such that $L(M) = L(M')$.

[Diagram of a 3-tape TM with labels and transitions shown.]
• \(\Leftrightarrow \): Given standard TM \(M \), construct a 2-stack NPDA \(M' \) such that \(L(M) = L(M') \).
Universal TM - a programmable TM

- **Input:**
 - an encoded TM M
 - input string w

- **Output:**
 - Simulate M on w
An encoding of a TM

Let \(TM \ M = \{ Q, \Sigma, \Gamma, \delta, q_1, B, F \} \)

- \(Q = \{ q_1, q_2, \ldots, q_n \} \)
 Designate \(q_1 \) as the start state.
 Designate \(q_2 \) as the only final state.
 \(q_n \) will be encoded as \(n \) 1’s

- Moves
 L will be encoded by 1
 R will be encoded by 11

- \(\Gamma = \{ a_1, a_2, \ldots, a_m \} \)
 where \(a_1 \) will always represent the B.
For example, consider the simple TM:

\[
\begin{align*}
\Gamma &= \{B, a, b\} \\
\end{align*}
\]

which would be encoded as

The TM has 2 transitions,

\[
\begin{align*}
\delta(q_1, a) &= (q_1, a, R), \\
\delta(q_1, b) &= (q_2, a, L)
\end{align*}
\]

which can be represented as 5-tuples:

\[
\begin{align*}
(q_1, a, q_1, a, R), (q_1, b, q_2, a, L)
\end{align*}
\]

Thus, the encoding of the TM is:

0101101011011011011011011010
For example, the encoding of the TM above with input string “aba” would be encoded as:

010110101101101101101011001101110110110110111011011001101011011011011011011011010011011101101101001

Question: Given $w \in \{0, 1\}^+$, is w the encoding of a TM?
Universal TM

The Universal TM (denoted M_U) is a 3-tape TM:
Program for M_U

1. Start with all input (encoding of TM and string w) on tape 1. Verify that it contains the encoding of a TM.

2. Move input w to tape 2

3. Initialize tape 3 to 1 (the initial state)

4. Repeat (simulate TM M)

 (a) consult tape 2 and 3, (suppose current symbol on tape 2 is a and state on tape 3 is p)

 (b) lookup the move (transition) on tape 1, (suppose $\delta(p,a) = (q,b,R)$.)

 (c) apply the move

 - write on tape 2 (write b
 - move on tape 2 (move right)
 - write new state on tape 3 (write q)
Observation: Every TM can be encoded as string of 0’s and 1’s.

Enumeration procedure - process to list all elements of a set in ordered fashion.

Definition: An infinite set is countable if its elements have 1-1 correspondence with the positive integers.

Examples:

- $S = \{\text{positive odd integers}\}$
- $S = \{\text{real numbers}\}$
- $S = \{w \in \Sigma^+\}, \Sigma = \{a, b\}$
- $S = \{\text{TM’s}\}$
- $S = \{(i,j) \mid i,j>0, \text{are integers}\}$
Linear Bounded Automata

We place restrictions on the amount of tape we can use,

\[
\begin{array}{c}
 \text{[a b c]}
 \\
 \uparrow
\end{array}
\]

Definition: A linear bounded automaton (LBA) is a nondeterministic TM
\[M=(Q, \Sigma, \Gamma, \delta, q_0, B, F) \]
such that \([,] \in \Sigma\) and the tape head cannot move out of the confines of \([,]\)'s. Thus,
\[\delta(q_i, [) = (q_j, [, R) \text{, and } \delta(q_i,]) = (q_j,], L) \]

Definition: Let \(M\) be a LBA.
\[L(M) = \{ w \in (\Sigma - \{[,]\})^* | q_0[w]^* \vdash [x_1qfx_2] \} \]

Example: \(L = \{a^n b^n c^n | n > 0\} \) is accepted by some LBA