Section: Regular Languages

Regular Expressions

Method to represent strings in a language

+ union (or)
○ concatenation (AND) (can omit)
* star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^*\]

Example:

\[(aa)^*\]
Definition Given Σ,

1. \emptyset, λ, $a \in \Sigma$ are R.E.

2. If r and s are R.E. then
 - $r+s$ is R.E.
 - rs is R.E.
 - (r) is a R.E.
 - r^* is R.E.

3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).
Definition: $L(r) =$ language denoted by R.E. r.

1. $\emptyset, \{\lambda\}, \{a\}$ are L denoted by a R.E.

2. if r and s are R.E. then

 (a) $L(r+s) = L(r) \cup L(s)$

 (b) $L(rs) = L(r) \circ L(s)$

 (c) $L((r)) = L(r)$

 (d) $L((r)^*) = (L(r)^*)$
Precedence Rules

* highest

Example:

\[ab^* + c = \]
Examples:

1. \(\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\} \).

2. \(\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has no more than } 3 \text{ } a\text{'s and must end in } ab\} \).

3. Regular expression for all integers (including negative)
Section 3.2 Equivalence of DFA and R.E.

Theorem Let \(r \) be a R.E. Then \(\exists \) NFA \(M \) s.t. \(L(M) = L(r) \).

- Proof:
 \(\emptyset \)
 \(\{\lambda\} \)
 \(\{a\} \)

Suppose \(r \) and \(s \) are R.E.

1. \(r+s \)
2. \(r\circ s \)
3. \(r^* \)
Example

\[ab^* + c \]
Theorem Let L be regular. Then \exists R.E. r s.t. $L=L(r)$.

Proof Idea: remove states successively until two states left

- Proof:

 L is regular

 $\Rightarrow \exists$

1. Assume M has one final state and $q_0 \not\in F$

2. Convert to a generalized transition graph (GTG), all possible edges are present.
 If no edge, label with
 Let r_{ij} stand for label of the edge from q_i to q_j
3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

\[r = (r_{ii}r_{ij}r_{ji}^*r_{ji})^*r_{ii}r_{ij}r_{jj}^* \]
4. If the GTG has three states then it must have the following form:
<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}^*r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^*r_{ki}$</td>
</tr>
</tbody>
</table>

remove state q_k
5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok} r_{kk} r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions r and s with:

$$
\begin{align*}
 r + r &= r \\
 s + r^* s &= \\
 r + \emptyset &= \\
 r\emptyset &= \\
 \emptyset^* &= \\
 r\lambda &= \\
 (\lambda + r)^* &= \\
 (\lambda + r)r^* &=
\end{align*}
$$

and similar rules.
Example:
Grammar \(G = (V,T,S,P) \)

- \(V \) variables (nonterminals)
- \(T \) terminals
- \(S \) start symbol
- \(P \) productions

Right-linear grammar:

all productions of form

\[
A \rightarrow xB
\]
\[
A \rightarrow x
\]

where \(A,B \in V \), \(x \in T^* \)
Left-linear grammar:

all productions of form
\[A \rightarrow Bx \]
\[A \rightarrow x \]

where \(A, B \in V, \ x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a, b\}, S, P), \quad P = \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]
Example 2:

\[G = (\{ S, B \}, \{ a, b \}, S, P), \quad P = \]
\[
S \rightarrow aB \mid bS \mid \lambda \\
B \rightarrow aS \mid bB
\]
Theorem: L is a regular language iff \exists regular grammar G s.t. $L = L(G)$.

Outline of proof:

(\Leftarrow) Given a regular grammar G
Construct NFA M
Show $L(G) = L(M)$

(\Rightarrow) Given a regular language
\exists DFA M s.t. $L = L(M)$
Construct reg. grammar G
Show $L(G) = L(M)$
Proof of Theorem:

(⇒) Given a regular grammar \(G \)
\(G=(V,T,S,P) \)
\(V=\{V_0, V_1, \ldots, V_y\} \)
\(T=\{v_o, v_1, \ldots, v_z\} \)
\(S=V_0 \)
Assume \(G \) is right-linear
(see book for left-linear case).
Construct NFA \(M \) s.t. \(L(G)=L(M) \)
If \(w \in L(G) \), \(w=v_1v_2 \ldots v_k \)
\[M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\}) \]

\(V_0 \) is the start (initial) state

For each production, \(V_i \to aV_j \),

For each production, \(V_i \to a \),

Show \(L(G) = L(M) \)

Thus, given R.G. G, \(L(G) \) is regular
(⇒⇒) Given a regular language L
\exists DFA M s.t. $L=L(M)$
$M=(Q,\Sigma,\delta,q_0, F)$
$Q=\{q_0, q_1, \ldots, q_n\}$
$\Sigma = \{a_1, a_2, \ldots, a_m\}$

Construct R.G. G s.t. $L(G) = L(M)$
$G=(Q,\Sigma,q_0,\Pi)$
if $\delta(q_i,a_j)=q_k$ then

if $q_k \in F$ then

Show $w \in L(M) \iff w \in L(G)$
Thus, $L(G)=L(M)$.

QED.
Example

\[G = (\{S, B\}, \{a, b\}, S, P), \quad P = \]
\[
S \rightarrow aB \mid bS \mid \lambda \\
B \rightarrow aS \mid bB
\]
Example: