Decision Trees

COMPSCI 371D — Machine Learning
Outline

1 Motivation
2 Recursive Splits and Trees
3 Prediction
4 Purity
5 How to Split
6 When to Stop Splitting
Motivation

Linear Predictors \rightarrow Trees \rightarrow Forests

- **Linear predictors:**
 - Few parameters \rightarrow Good generalization, efficient training
 - Convex risk \rightarrow Unique minimum risk, easy optimization
 - Score-based \rightarrow Measure of confidence
 - Few parameters \rightarrow Limited expressiveness:
 - Regressor is an affine function
 - Classifier is a set of convex regions in X

- **Decision trees:**
 - Score based (in a sophisticated way)
 - Arbitrarily expressive: Flexible, but generalizes poorly

- **Random decision forests:**
 - Ensembles of trees that vote on an answer
 - Expressive (somewhat less than trees), generalize well
Splitting X Recursively

Recursive Splits and Trees

COMPSCI 371D — Machine Learning
Decision Trees

4 / 17
A Decision Tree

Choose splits to maximize purity
What’s in a Node

- **Internal:**
 - Split parameters: Dimension \(j \in \{1, \ldots, d\} \), threshold \(t \in \mathbb{R} \)
 - Pointers to children, corresponding to subsets of \(T \):
 \[
 L \overset{\text{def}}{=} \{(x, y) \in S \mid x_j \leq t\} \\
 R \overset{\text{def}}{=} \{(x, y) \in S \mid x_j > t\}
 \]
- **Leaf:** Distribution of training values \(y \) in this subset of \(X \):
 - \(p \), discrete for classification, histogram for regression
- At inference time, return a *summary* of \(p \) as the value for the leaf
 - Mode (majority) for a classifier
 - Mean or median for a regressor
 - (Remember \(k \)-NN?)
Why Store p?

- Can’t we just store $\text{summary}(p)$ at the leaves?
- With p, we can compute a confidence value
- (More important) We need p at every node during training to evaluate purity
Prediction

function y ← predict(x, τ, summary)
 if leaf?(τ) then
 return summary(τ.p)
 else
 return predict(x, split(x, τ), summary)
 end if
end function

function τ ← split(x, τ)
 if x_{τ,j} ≤ τ.t then
 return τ.L
 else
 return τ.R
 end if
end function
Design Decisions for Training

- How to define (im)purity
- How to find optimal split parameters j and t
- When to stop splitting
Purity: The Gini Index

- S: subset of T that reaches the given node
- $i(S) = 1 - \sum_{y \in Y} p^2(y|S)$ where $p(y|S) = \frac{1}{|S|} \sum_{(x_i,y_i) \in S} \mathbb{I}(y_i \approx y)$
- Measures the empirical risk for the stochastic predictor $y = h_{\text{Gini}}(x) = y$ with probability $p(y|S(x))$
- True answer $y \rightarrow$ error probability $\approx 1 - p(y|S)$, so $L_S(h_{\text{Gini}}) = \sum_{y \in Y} p(y|S)(1 - p(y|S)) = 1 - \sum_{y \in Y} p^2(y|S) = i(S)$
- Not the only option. For classifiers, a simpler option is $i(S) = \overline{\text{err}}(S) = 1 - \max_y p(y|S)$
How to Split

• Split at training time:
 If training subset S made it to the current node,
 put all samples in S into either L or R by the split rule
• Split at inference time: Send x either to $\tau.L$ or to $\tau.R$
• Either way:
 • Choose a dimension j in $\{1, \ldots, d\}$
 • Choose a threshold t
 • Any data point for which $x_j \leq t$ goes to $\tau.L$
 • All other points go to $\tau.R$
• How to pick j and t?
How to Pick j and t at Each Node?

- **Try all possibilities and pick the best**
- "Best:" Maximizes the decrease in impurity:
 \[
 \Delta i(S, L, R) = i(S) - \left(\frac{|L|}{|S|} i(L) + \frac{|R|}{|S|} i(R) \right)
 \]
- "All possibilities:" Choices are finite in number
 - Sorted unique values in x_j across T: $x_j^{(0)}, \ldots, x_j^{(u_j)}$
 - Possible thresholds: $t = t_j^{(1)}, \ldots, t_j^{(u_j)}$
 where $t_j^{(\ell)} = \frac{x_j^{(\ell-1)} + x_j^{(\ell)}}{2}$ for $\ell = 1, \ldots, u_j$
 - Nested loop: for $j = 1, \ldots, d$
 for $t = t_j^{(1)}, \ldots, t_j^{(u_j)}$
 - Efficiency hacks are possible
Stopping too Soon is Dangerous

- Temptation: Stop when impurity does not decrease
When to Stop Splitting

- Possible stopping criteria
 - Impurity is zero
 - Too few samples would result in either L or R
 - Maximum depth reached
- Overgrow the tree, then prune it
- There is no optimal pruning method
 (Finding the optimal tree is NP-hard)
 (Reduction from set cover problem, Hyafil and Rivest)
- Better option: *Random Decision Forests*
Summary: Training a Decision Tree

- Use exhaustive search at every node to find the dimension \(j \) and threshold \(t \) that splits \(T \) with the biggest decrease in impurity.
- Store \(j \) and \(t \) at the root of the tree.
- Make new children with \(L \) and \(R \).
- Repeat until some criterion is met.
Summary: Predicting with a Decision Tree

- Use \(j \) and \(t \) at the root \(\tau \) to see if \(x \) belongs in \(\tau.L \) or \(\tau.R \).
- Go to the appropriate child.
- Repeat until a leaf is reached.
- Return \(\text{summary}(p) \).
- \(\text{summary} \) is majority for a classifier, mean or median for a regressor.
When to Stop Splitting

From Trees to Forests

- Trees are flexible \rightarrow good expressiveness
- Trees are flexible \rightarrow poor generalization
- Pruning is an option, but messy
- *Random Decision Forests* let several trees vote
- Use the bootstrap to give different trees different views of the data
- Randomize split rules to make trees even more independent