CompSci 516
Database Systems

Lecture 20
Parallel DBMS

Instructor: Sudeepa Roy
Reading Material

- [RG]
 - Parallel DBMS: Chapter 22.1-22.5

- [GUW]
 - Parallel DBMS and map-reduce: Chapter 20.1-20.2

Acknowledgement:
The following slides have been created adapting the instructor material of the [RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.
Reading Material

• [RG]
 – Parallel DBMS: Chapter 22.1-22.5
 – Distributed DBMS: Chapter 22.6 – 22.14

• [GUW]
 – Parallel DBMS and map-reduce: Chapter 20.1-20.2
 – Distributed DBMS: Chapter 20.3, 20.4.1-20.4.2, 20.5-20.6

• Recommended readings:
 – Chapter 2 (Sections 1,2,3) of Mining of Massive Datasets, by Rajaraman and Ullman: http://i.stanford.edu/~ullman/mmds.html
 – Original Google MR paper by Jeff Dean and Sanjay Ghemawat, OSDI’ 04: http://research.google.com/archive/mapreduce.html

Acknowledgement:
The following slides have been created adapting the instructor material of the [RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.
Parallel and Distributed Data Processing

• Recall from Lecture 18-19!
• data and operation distribution if we have multiple machines

• Parallelism
 – performance

• Data distribution
 – increased availability, e.g. when a site goes down
 – distributed local access to data (e.g. an organization may have branches in several cities)
 – analysis of distributed data
Parallel vs. Distributed DBMS

Parallel DBMS

• Parallelization of various operations
 – e.g. loading data, building indexes, evaluating queries

• Data may or may not be distributed initially

• Distribution is governed by performance consideration

Distributed DBMS

• Data is physically stored across different sites
 – Each site is typically managed by an independent DBMS

• Location of data and autonomy of sites have an impact on Query opt., Conc. Control and recovery

• Also governed by other factors:
 – increased availability for system crash
 – local ownership and access
Parallel DBMS
Why Parallel Access To Data?

At 10 MB/s
1.2 days to scan

1,000 x parallel
1.5 minute to scan.

Parallelism:
divide a big problem
into many smaller ones
to be solved in parallel.
Parallel DBMS

• Parallelism is natural to DBMS processing
 – Pipeline parallelism: many machines each doing one step in a multi-step process.
 – Data-partitioned parallelism: many machines doing the same thing to different pieces of data.
 – Both are natural in DBMS!

Pipeline

Partition

outputs split N ways, inputs merge M ways
DBMS: The parallel Success Story

• **DBMSs are the most successful application of parallelism**
 – Teradata (1979), Tandem (1974, later acquired by HP),...
 – Every major DBMS vendor has some parallel server

• **Reasons for success:**
 – Bulk-processing (= partition parallelism)
 – Natural pipelining
 – Inexpensive hardware can do the trick
 – Users/app-programmers don’t need to think in parallel
Some || Terminology

Ideal graphs

• Speed-Up
 – More resources means proportionally less time for given amount of data.

• Scale-Up
 – If resources increased in proportion to increase in data size, time is constant.
Some || Terminology

In practice

• Due to overhead in parallel processing

• Start-up cost
Starting the operation on many processor, might need to distribute data

• Interference
Different processors may compete for the same resources

• Skew
The slowest processor (e.g. with a huge fraction of data) may become the bottleneck

Ideal: linear speed-up
Ideal: linear scale-up
Actual: sub-linear speed-up
Actual: sub-linear scale-up

Duke CS, Fall 2018
CompSci 516: Database Systems
Architecture for Parallel DBMS

• Among different computing units

 – Whether memory is shared
 – Whether disk is shared
Basics of Parallelism

• **Units: a collection of processors**
 – assume always have local cache
 – may or may not have local memory or disk (next)

• **A communication facility to pass information among processors**
 – a shared bus or a switch
Shared Disk

Interconnection Network

local memory

shared disk
Shared Nothing

Interconnection Network

local memory and disk

no two CPU can access the same storage area

all communication through a network connection
Architecture: At A Glance

Shared Memory (SMP)
- Easy to program
- Expensive to build
- Low communication overhead: shared mem.
- Difficult to scaleup (memory contention)

Shared Disk
- Trade-off but still interference like shared-memory (contention of memory and nw bandwidth)

Shared Nothing (network)
- Hard to program and design parallel algs
- Cheap to build
- Easy to scaleup and speedup
- Considered to be the best architecture

Sequent, SGI, Sun
VMScluster, Sysplex
Tandem, Teradata, SP2

Duke CS, Fall 2018
CompSci 516: Database Systems
17
What Systems Worked This Way

NOTE: (as of 9/1995)!

Shared Nothing
- Teradata: 400 nodes
- Tandem: 110 nodes
- IBM / SP2 / DB2: 128 nodes
- Informix/SP2: 48 nodes
- ATT & Sybase: ? nodes

Shared Disk
- Oracle: 170 nodes
- DEC Rdb: 24 nodes

Shared Memory
- Informix: 9 nodes
- RedBrick: ? nodes
Different Types of DBMS Parallelism

- **Intra-operator parallelism**
 - get all machines working to compute a given operation (scan, sort, join)
 - OLAP (decision support)

- **Inter-operator parallelism**
 - each operator may run concurrently on a different site (exploits pipelining)
 - For both OLAP and OLTP

- **Inter-query parallelism**
 - different queries run on different sites
 - For OLTP

- **We’ll focus on intra-operator parallelism**
Data Partitioning

Horizontally Partitioning a table (why horizontal?):

Range-partition

- Good for equijoins, range queries, group-by
- Can lead to data skew

Hash-partition

- Good for equijoins
- But only if hashed on that attribute
- Can lead to data skew

Block-partition or Round Robin

- Send i-th tuple to i-mod-n processor
- Good to spread load
- Good when the entire relation is accessed

Shared disk and memory less sensitive to partitioning,
Shared nothing benefits from "good" partitioning
Example

• \(R(\text{Key}, A, B) \)

• Can Block-partition be skewed?
 – no, uniform

• Can Hash-partition be skewed?
 – on the key: uniform with a good hash function
 – on A: may be skewed,
 • e.g. when all tuples have the same A-value
Parallelizing Sequential Evaluation Code

• “Streams” from different disks or the output of other operators
 – are “merged” as needed as input to some operator
 – are “split” as needed for subsequent parallel processing

• Different Split and merge operations appear in addition to relational operators

• No fixed formula for conversion

• Next: parallelizing individual operations
Parallel Scans

• Scan in parallel, and merge.
• Selection may not require all sites for range or hash partitioning
 – but may lead to skew
 – Suppose $\sigma_{A=10}R$ and partitioned according to A
 – Then all tuples in the same partition/processor

• Indexes can be built at each partition
Parallel Sorting

Idea:

• Scan in parallel, and range-partition as you go
 – e.g. salary between 10 to 210, #processors = 20
 – salary in first processor: 10-20, second: 21-30, third: 31-40,

• As tuples come in, begin “local” sorting on each
• Resulting data is sorted, and range-partitioned
• Visit the processors in order to get a full sorted order
• Problem: skew!
• Solution: “sample” the data at start to determine partition points.
Parallel Joins

• Need to send the tuples that will join to the same machine
 – also for GROUP-BY

• Nested loop:
 – Each outer tuple must be compared with each inner tuple that might join
 – Easy for range partitioning on join cols, hard otherwise

• Sort-Merge:
 – Sorting gives range-partitioning
 – Merging partitioned tables is local
Parallel Hash Join

• In first phase, partitions get distributed to different sites:
 – A good hash function *automatically* distributes work evenly

• Do second phase at each site.

• Almost always the winner for equi-join
Example with parallel hash join between A and B

Dataflow Network for parallel Join

- Good use of split/merge makes it easier to build parallel versions of sequential join code.
Parallel Aggregates

• For each aggregate function, need a decomposition:
 – $\text{count}(S) = \sum \text{count}(s(i))$, ditto for $\text{sum}()$
 – $\text{avg}(S) = (\sum \text{sum}(s(i))) / \sum \text{count}(s(i))$
 – and so on...

• For group-by:
 – Sub-aggregate groups close to the source.
 – Pass each sub-aggregate to its group’s site.
 • Chosen via a hash fn.

Which SQL aggregate operators are not good for parallel execution?
Best serial plan may not be best

• Why?

• Trivial counter-example:
 – Table partitioned with local secondary index at two nodes
 – Range query: all of node 1 and 1% of node 2.
 – Node 1 should do a scan of its partition.
 – Node 2 should use secondary index.
Examples
Example problem: Parallel DBMS

$R(a,b)$ is horizontally partitioned across $N = 3$ machines.

Each machine locally stores approximately $1/N$ of the tuples in R.

The tuples are randomly organized across machines (i.e., R is block partitioned across machines).

Show a RA plan for this query and how it will be executed across the $N = 3$ machines. Pick an efficient plan that leverages the parallelism as much as possible.

- **SELECT** a, $\text{max}(b)$ as topb
- **FROM** R
- **WHERE** $a > 0$
- **GROUP BY** a

We did this example for Map-Reduce in Lecture 12!
R(a, b)

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a
R(a, b)

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

If more than one relation on a machine, then “scan S”, “scan R” etc
SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a
SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a
R(a, b)

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a
SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a
SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY a

\(\gamma_{a, \text{max}(b) \rightarrow \text{topb}} \)

Hash on a

\(\gamma_{a, \text{max}(b) \rightarrow b} \)

\(\sigma_{a>0} \)

scan

Machine 1

Machine 2

Machine 3

\(R(a, b) \)
Benefit of hash-partitioning

- What would change if we hash-partitioned R on $R.a$ before executing the same query on the previous parallel DBMS and MR

- First Parallel DBMS

```
SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a
```
SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a
Hash-partition on a for R(a, b)

- It would avoid the data re-shuffling phase
- It would compute the aggregates locally

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a
Hash-partition on a for R(a, b)

\[\gamma_{a, \max(b)} \rightarrow \text{topb} \]

\[\sigma_{a > 0} \]

\[\text{scan} \]

Machine 1

\[1/3 \text{ of } R \]

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a

\[\gamma_{a, \max(b)} \rightarrow \text{topb} \]

\[\sigma_{a > 0} \]

\[\text{scan} \]

Machine 2

\[1/3 \text{ of } R \]

\[\gamma_{a, \max(b)} \rightarrow \text{topb} \]

\[\sigma_{a > 0} \]

\[\text{scan} \]

Machine 3

\[1/3 \text{ of } R \]
Benefit of hash-partitioning for Map-Reduce

• For MapReduce
 – Logically, MR won’t know that the data is hash-partitioned
 – MR treats map and reduce functions as black-boxes and does not perform any optimizations on them

• But, if a local combiner is used
 – Saves communication cost:
 • fewer tuples will be emitted by the map tasks
 – Saves computation cost in the reducers:
 • the reducers would have to do anything

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a