Why does AI need uncertainty?

- Reason: Sh*t happens
- Actions don’t have deterministic outcomes

- Can logic be the “language” of AI???
- Problem: General logical statements are almost always false

- Truthful and accurate statements about the world would seem to require an endless list of qualifications
- How do you start a car?
- Call this “The Qualification Problem”
The Qualification Problem

- Is this a real concern?
- YES!
- Systems that try to avoid dealing with uncertainty tend to be brittle.
- Plans fail
- Finding shortest path to goal isn’t that great if the path doesn’t really get you to the goal

3 Sources of Uncertainty

- Imperfect representations of the world
- Imperfect observation of the world
- Laziness, efficiency
Observation of the Real World

The real world in some state gives rise to percepts. These percepts can be interpreted in the representation language, which includes predicates such as On(A,B), On(B,Table), and Handempty.

Percepts can be user’s inputs, sensory data (e.g., image pixels), information received from other agents, ...

First Source of Uncertainty: Imperfect Representations

- There are many more states of the real world than can be expressed in the representation language.
- So, any state represented in the language may correspond to many different states of the real world, which the agent can’t represent distinguishably.
- The language may lead to incorrect predictions about future states.

The formula On(A,B) ∧ On(B,Table) ∧ On(C,Table) ∧ Clear(A) ∧ Clear(C) illustrates the uncertainty.

A B C → C A B → A B C
Second source of Uncertainty: Imperfect Observation of the World

- Observation of the world can be:
 - **Partial**, e.g., a vision sensor can’t see through obstacles (lack of percepts)

![Diagram showing two rooms: R1 and R2, with a robot in R1 and objects in R2]

The robot may not know whether there are (or how many) objects in room R2 due to perception limits.

Second source of Uncertainty: Imperfect Observation of the World

- Observation of the world can be:
 - **Partial**, e.g., a vision sensor can’t see through obstacles
 - **Ambiguous**, e.g., percepts have multiple possible interpretations

![Diagram showing a block labeled A and another block labeled B, with a arrow indicating On(A,B) ∨ On(A,C)]
Third Source of Uncertainty: Laziness, Efficiency

- An action may have a long list of preconditions, e.g.:
 Drive-Car:
 \[P = \text{Have-Keys} \land \neg \text{Empty-Gas-Tank} \land \]
 \[
 \text{Battery-Ok} \land \text{Ignition-Ok} \land \\
 \neg \text{Flat-Tires} \land \neg \text{Stolen-Car} \ldots
 \]
- The agent’s designer may ignore some preconditions ... or by laziness or for efficiency, may not want to include all of them in the action representation
- The result is a representation that is either incorrect – executing the action may not have the described effects – or that describes several alternative effects

Probabilities

- Natural way to represent uncertainty
- People have intuitive notions about probabilities
- Many of these are wrong or inconsistent
- Most people don’t get what probabilities mean
- Finer details of this question still debated
Broken Probabilistic Intuitions

• Is the sequence 123456 any less likely than any other sequence of lottery numbers?

• Are rare events because they are “due” to come up?

• Cancer clusters

• Texas sharpshooter fallacy (also about cause and effect)

• Spurious correlations

Relative Frequencies

• Consider a world where a dentist agent D meets a new patient P

• D is interested in only one thing: whether P has a cavity, which D models using the proposition Cavity

• Before making any observation, D’s belief state is:

 Cavity ¬ Cavity
 p 1-p

• This means that D believes that a fraction p of patients have cavities
Relative Frequencies

- Probabilities defined over events
- Space of all possible events is the “event space”

Event space:

\[P(A) \approx \text{percentage of dart throws that hit } A \text{ (assuming a uniform distribution of dart hits over the area of the box)} \]

Understanding Probabilities More Subtly

- Initially, probabilities are “relative frequencies”
- This works well for dice and coin flips
- For more complicated events, this is problematic
- Probability Trump winning re-election in 2020?
 - This event only happens once
 - We can’t count frequencies
 - Still seems like a meaningful question
- In general, all events are unique
- “Reference Class” problem
Probabilities and Beliefs

• Suppose I have flipped a coin and hidden the outcome
• What is P(Heads)?

• Note that this is a statement about a belief, not a statement about the world
• The world is in exactly one state (at the macro level) and it is in that state with probability 1.
• Assigning truth values to probability statements is very tricky business
• Must reference speakers state of knowledge

Frequentism and Subjectivism

• Frequentists: Probabilities = relative frequencies
 – Purist viewpoint
 – But, relative frequencies often unobtainable
 – Often requires complicated and convoluted assumptions to come up with probabilities

• Subjectivists: Probabilities = degrees of belief
 – Taints purity of probabilities
 – Often more practical
The Middle Ground

- No two events are ever identical, but
- No two events are ever totally unique either
- Probability that Trump will win the re-election in 2020?
 - We now how states have leaned in the past
 - We have polling data
 - Etc...
- In reality, we use probabilities as beliefs, but we allow data (relative frequencies) to influence these beliefs
- More precisely: We can use Bayes rule to combine our prior beliefs with new data

Why probabilities are good

- Subjectivists: probabilities are degrees of belief
- Are all degrees of belief probability?
 - AI has used many notions of belief:
 - Certainty Factors
 - Fuzzy Logic
- Can prove that a person who holds a system of beliefs inconsistent with probability theory can be tricked into accepted a sequence of bets that is guaranteed to lose (Dutch book) in expectation
What are probabilities mathematically?

• Probabilities are defined over random variables
• Random variables represented with capitals: X,Y,Z

• RVs take on values from a finite domain: d(X), d(Y), d(Z)

• We use lower case letters for values from domains
 – X=x asserts: RV X has taken on value x
 – P(x) is shorthand for P(X=x)

Event spaces for binary, discrete RVs

• 2 variable case

• Important: Event space grows exponentially in number of random variables
• Components of event space = atomic events
Domains

- In the simplest case, domains are Boolean
- In general may include many different values
- Most general case: domains may be continuous
- Continuous domains introduce complications

Kolmogorov’s axioms of probability

- $0 \leq P(a) \leq 1$
- $P(\text{true}) = 1; P(\text{false})=0$
- $P(a \text{ or } b) = P(a) + P(b) - P(a \text{ and } b)$
- Subtract to correct for double counting

- Sufficient to completely specify probability theory for discrete variables
- Continuous variables need density functions
Atomic Events

• When several variables are involved, it is useful to think about atomic events
• Complete assignment to variables in the domain
 – Atomic events are mutually exclusive
 – Exhaust space of all possible events
 – Atomic events = states

• For n binary variables, how many unique atomic events are there?

Joint Distributions

• A joint distribution is an assignment of probabilities to every possible atomic event
• We can define all other probabilities in terms of the joint probabilities by marginalization:

\[P(a) = P(a \land b) + P(a \land \neg b) \]

\[P(a) = \sum_{e_i \in e(a)} P(e_i) \]
Example

• $P(\text{cold} \land \text{headache}) = 0.4$
• $P(\neg\text{cold} \land \text{headache}) = 0.2$
• $P(\text{cold} \land \neg\text{headache}) = 0.3$
• $P(\neg\text{cold} \land \neg\text{headache}) = 0.1$

• What are $P(\text{cold})$ and $P(\text{headache})$?

Independence

• If A and B are independent:
 $P(A \land B) = P(A)P(B)$

• $P(\text{cold} \land \text{headache}) = 0.4$
• $P(\neg\text{cold} \land \text{headache}) = 0.2$
• $P(\text{cold} \land \neg\text{headache}) = 0.3$
• $P(\neg\text{cold} \land \neg\text{headache}) = 0.1$

• Are cold and headache independent?
Independence and Mutual Exclusivity

• If A and B are mutually exclusive:
 \[P(A \lor B) = P(A) + P(B) \] (Why?)

• Examples of independent events:
 – Duke winning NCAA, Dem. winning white house
 – Two successive, fair coin flips
 – My car starting and my iPhone working
 – etc.

• Can independent events be mutually exclusive?

Why Probabilities Are Messy

• Probabilities are not truth-functional
• Computing \(P(a \text{ and } b) \) requires the joint distribution
 – sum out all of the other variables from the distribution
 – It is not a function of \(P(a) \) and \(P(b) \)
• This fact led to many approximations methods such as certainty factors and fuzzy logic (Why?)
• Neat vs. Scruffy...
Why AI avoided probabilities for decades:

• Reasoning about probabilities correctly requires knowledge of the joint distribution
 – Exponentially large!
 – Very convenient!

• But...assuming independence (mutual exclusivity) when there is not independence (mutual exclusivity) leads to incorrect answers

• Examples:
 – ANDing symptoms by multiplying (independence)
 – ORing symptoms by adding (mutual exclusivity)

Neat vs. Scruffy AI

• Scruffy: Do what works or is computationally efficient, even if it isn’t always right

• Neat: Most important to do what is mathematically correct, or principled approximations thereof if resources are not adequate

• Tug of war between neat and scruffy:
 – Scruffy approach to uncertainty prevailed through late 80’s early 90’s
 – In 90’s AI became very neat – better results but hard to scale up
 – Deep learning introduces scruffiness again, though not as scruffy as in the 80’s

Source: Know Your Meme
Conditional Probabilities

- Ordinary probabilities for random variables: \textit{unconditional or prior} probabilities

- \(P(a | b) = \frac{P(a \text{ AND } b)}{P(b)} \)

- This tells us the probability of \(a \) \textit{given that we know only} \(b \)

- If we know \(c \) and \(d \), we \textit{can’t use} \(P(a | b) \) \textit{directly}
 (without additional assumptions)

- Annoying, but solves the qualification problem...

Probability Solves the Qualification Problem

- \(P(\text{disease} | \text{symptom1}) \)

- Defines the probability of a disease \textit{given that we have observed only} \(\text{symptom1} \)

- The conditioning bar indicates that the probability is defined with respect to a particular state of knowledge, \textit{not as an absolute thing}
Condition with Bayes’ Rule

\[
P(A \land B) = P(B \land A)
\]

\[
P(A \mid B)P(B) = P(B \mid A)P(A)
\]

\[
P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}
\]

Note that we will usually call Bayes’ rules “Bayes Rule”

Conditioning and Belief Update

- Suppose we know \(P(ABCDE)\)
- Observe \(B=b\), update our beliefs:

\[
P(ACDE \mid b) = \frac{P(ABcDE)}{P(b)} = \frac{P(ABcDE)}{\sum_{ACDE} P(ABcDE)}
\]

Notation comment: This is a very condensed notation. \(P(ACDE \mid b)\) is not a number; \textit{it’s a distribution}
Example Revisited

- $P(\text{cold} \land \text{headache}) = 0.4$
- $P(\neg\text{cold} \land \text{headache}) = 0.2$
- $P(\text{cold} \land \neg\text{headache}) = 0.3$
- $P(\neg\text{cold} \land \neg\text{headache}) = 0.1$

- What is $P(\text{cold} | \text{headache})$?

Let’s Play Doctor

- Suppose $P(\text{cold}) = 0.7$, $P(\text{headache}) = 0.6$
- $P(\text{headache} | \text{cold}) = 0.57$
- What is $P(\text{cold} | \text{headache})$ using Bayes Rule:

\[
P(c \mid h) = \frac{P(h \mid c)P(c)}{P(h)}
\]

\[
= \frac{0.57 \times 0.7}{0.6} = 0.66
\]

- IMPORTANT: **Not always symmetric**
Another Example

- “The probability that one of these women has breast cancer is 0.8 percent. If a woman has breast cancer, the probability is 90 percent that she will have a positive mammogram. If a woman does not have breast cancer, the probability is 7 percent that she will still have a positive mammogram. Imagine a woman who has a positive mammogram. What is the probability that she actually has breast cancer?”

- 95/100 U.S. doctors answered ~75%

Expectation

- Most of us use expectation in some form when we compute averages
- What is the average value of a die roll?

- \[(1+2+3+4+5+6)/6 = 3.5\]

- Is it possible for all children to be above average?
Bias

• What if not all events are equally likely?
• Suppose weighted die makes 6 2X more likely than anything else. What is average value of outcome?

• \((1 + 2 + 3 + 4 + 5 + 6 + 6)/7 = 3.86\)
• Probs: 1/7 for 1...5, and 2/7 for 6
• \((1 + 2 + 3 + 4 + 5)*1/7 + 6 * 2/7 = 3.86\)

Expectation in General

• Suppose we have some RV \(X\)
• Suppose we have some function \(f(X)\)
• What is the expected value of \(f(X)\)?

\[
E f(x) = \sum_x P(X) f(X)
\]
Sums of Expectations

• Suppose we have \(f(X) \) and \(g(Y) \).
• What is the expected value of \(f(X)+g(Y) \)?

\[
E(Y) = \sum_{x,y} P(X \land Y)(f(X)+g(Y))
\]

\[
= \sum_{x,y} P(X \land Y) f(X) + \sum_{x,y} P(X \land Y) g(Y)
\]

\[
= \sum_x f(x) \sum_y P(X \land Y) + \sum_y g(y) \sum_x P(X \land Y)
\]

\[
= \sum_x f(x) P(X) + \sum_y g(y) P(Y)
\]

\[
= E(X) + E(Y)
\]

Continuous Random Variables

• Domain is some interval, region, or union of regions
• Uniform case: Simplest to visualize
 (event probability is proportional to area)
• Non-uniform case visualized with extra dimension

Gaussian (normal/bell) distribution:
Requirements on Continuous Distributions

- $p(x) > 1$ is possible so long as:

 $$\int_{x} p(x)\,dx = 1$$

- Don’t confuse $p(x)$ and $P(X=x)$
- $P(X=x)$ for any x is 0!

$$P(x \in A) = \int_{A} p(x)\,dx$$

Sloppy Comment about Continuous Distributions

- In many, many cases, you can generalize what you know about discrete distributions to continuous distributions, replacing “P” with “p” and “Σ” with “\int”

- Proper treatment of this topic requires measure theory and is beyond the scope of the class
Probability Conclusions

• Probabilistic reasoning has many advantages:
 – Solves qualification problem
 – Is better than any other system of beliefs (Dutch book argument)

• Probabilistic reasoning is tricky
 – Some things decompose nicely: linearity of expectation, conjunctions of independent events, disjunctions of disjoint events
 – Some things can be counterintuitive at first: conjunctions of arbitrary events, conditional probability

• Reasoning efficiently with probabilities poses significant data structure and algorithmic challenges for AI

 (Roughly speaking, the AI community realized some time around 1990 that probabilities were the right thing and has spent the last 20 years grappling with this realization. RP: Are we forgetting how to do the right thing with the rise of deep learning?)