Deep RL

Ron Parr
CompSci 570

Q-Learning Review

• Want to maintain good properties of TD

• Learns good policies and optimal value function, not just the value of a fixed policy

• Simple modification to TD that learns the optimal policy regardless of how you act! (mostly)
Q-learning

• Recall value iteration:

\[V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^i(s') \]

• Can split this into two functions:

\[Q^{i+1}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^i(s') \]

\[V^{i+1}(s) = \max_a Q^{i+1}(s,a) \]

Q-learning

• Store Q values instead of a value function
• Makes selection of best action easy
• Update rule:

\[Q^{\text{temp}}(s,a) = r + \gamma \max_{a'} Q^i(s',a') \]

\[Q^{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q^{\text{temp}}(s,a) \]
Q-learning Properties

• Converges under same conditions as TD
• Still must visit every state infinitely often
• Separates policy you are currently following from value function learning:

\[Q^\text{temp}(s,a) = r + \gamma \max_{a'} Q^i(s',a') \]

\[Q^{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q^\text{temp}(s,a) \]

Note: If there is only one action possible in each state, then Q-learning and TD-learning are identical.

Value Function Representation

• Fundamental problem remains unsolved:
 • TD/Q learning solves model-learning problem, but
 • Large models still have large value functions
 • Too expensive to store these functions
 • Impossible to visit every state in large models

• Function approximation
 • Use machine learning methods to generalize
 • Avoid the need to visit every state
Function Approximation

- General problem: Learn function $f(s)$
 - Linear regression
 - Neural networks
 - State aggregation (violates Markov property)

- Idea: Approximate $f(s)$ with $g(s; \theta)$
 - g is some easily computable function of s and θ
 - Try to find θ that minimizes the error in g

Updates with Approximation

- Recall regular Q update:
 \[
 Q^{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q^{\text{temp}}(s,a)
 \]

- With function approximation:

- Update:
 \[
 w^{i+1} = w^i + \alpha(Q^{\text{temp}}(s,a) - Q^i(s,a; w))V_wQ(s,a; w)
 \]

Neural networks are a special case of this.
Learning to play Backgammon

• Neurogammon developed in 1989 using supervised learning
 • Trained NN on expert human moves
 • Played at level of intermediate human player

• TD-gammon developed in 1992 using RL
 • Neural network value function approximation
 • TD sufficient (known model)
 • Using raw board positions, learned to play as well as neurogammon
 • Tesauro added carefully selected features to the network
 • Then had it play 1 million games played against self
 • Comparable performance to best human players

RL after TD-gammon

• For 20 years after TD-gammon, many tried to reproduce success of combination of RL with neural networks for other domains
 • Often FAILED with bad policies or weights that diverged (went to infinity)

 • Community largely retreated into linear value function approximation and focused on techniques for generating and selecting good features

• Deepmind Deep RL result causes seismic shift in community comparable or larger to Tesauro’s result
Lessons learned

- From TD-Gammon to DQN surprisingly little as changed
 - Still no stability or performance guarantees despite changes
 - Training still requires massive amounts of data
 - Convnets, small changes in training make a big difference (as in deep nets)

- Yet everything has changed
 - After years of frustration in applying RL to hard problems, now people want to apply RL to everything
 - Harder games
 - Power management in data centers
 - Robotic control
After DQN/Atari

- Some concern that community is focused too much on game playing
- Learning (only) value/Q-functions from images is limiting
- Combined policy gradient/value function methods (see policy gradient theorem) currently seem to learn faster in many cases
- Combine with recurrent network techniques (e.g. LSTM) to handle state that isn’t directly observable
- Combine with search for for turn-based games

A comment on search+RL

- Why does search help?
- Search classically uses an ”evaluation function” as a surrogate for searching to the end of the game tree (which would be too expensive)
- This can be learned by RL
- Q/Value function is presumed to be more accurate (and/or have lower variance) closer to end of game
- Search propagates information from more accurate/certain states to current state