1.5 Union Find

- dynamic connectivity
- quick find
- quick union
- improvements
- applications

Steps to developing a usable algorithm.
- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.

Union-find applications

- Percolation.
- Games (Go, Hex).
- Dynamic connectivity.
- Least common ancestor.
- Equivalence of finite state automata.
- Hoshen-Kopelman algorithm in physics.
- Hinley-Milner polymorphic type inference.
- Kruskal’s minimum spanning tree algorithm.
- Compiling equivalence statements in Fortran.
- Morphological attribute openings and closings.
- Matlab’s `bwlabel()` function in image processing.

Percolation

A model for many physical systems:
- N-by-N grid of sites.
- Each site is open with probability p (or blocked with probability 1 − p).
- System percolates iff top and bottom are connected by open sites.
Depends on site vacancy probability p.

<table>
<thead>
<tr>
<th>p low (0.4)</th>
<th>p medium (0.6)</th>
<th>p high (0.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>does not percolate</td>
<td>percolates?</td>
<td>percolates</td>
</tr>
</tbody>
</table>

Percolation phase transition

When N is large, theory guarantees a sharp threshold p^*.

- $p > p^*$: almost certainly percolates.
- $p < p^*$: almost certainly does not percolate.

Q. What is the value of p^*?

Monte Carlo simulation

- Initialize N-by-N whole grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates p^*.

Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
How to check whether an N-by-N system percolates?

- Create an object for each site and name them 0 to $N^2 - 1$.
- Sites are in the same set if connected by open sites.
- Percolates iff any site on the bottom row is connected to a site on the top row.

Brute-force algorithm: N^2 calls to `connected()`.

Clever trick. Introduce two virtual sites (and connections to the top and bottom).
- Percolates iff virtual top site is connected to virtual bottom site.

Efficient algorithm: only 1 call to `connected()`.
Clever trick. Introduce two virtual sites (and connections to top and bottom).
- Percolates iff virtual top site is connected to virtual bottom site.
- Open site is full iff connected to virtual top site.

Q. How to model as dynamic connectivity problem when opening a new site?
A. Connect new site to all of its adjacent open sites.

- dynamic connectivity
 - quick find
 - quick union
 - improvements
 - applications
Dynamic connectivity

Given a set of objects
• **Union**: connect two objects.
• **Connected**: is there a path connecting the two objects?

union(3, 4)
union(8, 0)
union(2, 3)
union(5, 6)
connected(0, 2) **no**
connected(2, 4) **yes**
union(5, 1)
union(7, 3)
union(1, 6)
union(4, 8)
connected(0, 2) **yes**
connected(2, 4) **yes**

more difficult problem: find the path

Connectivity example

Q. Is there a path from p to q?

A. Yes.

Modeling the objects

Dynamic connectivity applications involve manipulating objects of all types.
• Pixels in a digital photo.
• Computers in a network.
• Variable names in Fortran.
• Friends in a social network.
• Transistors in a computer chip.
• Elements in a mathematical set.
• Metallic sites in a composite system.

When programming, convenient to name sites 0 to N-1.
• Use integers as array index.
• Suppress details not relevant to union-find.

Modeling the connections

We assume "is connected to" is an equivalence relation:
• Reflexive: p is connected to p.
• Symmetric: if p is connected to q, then q is connected to p.
• Transitive: if p is connected to q and q is connected to r, then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

Modeling the connections
Implementing the operations

Find query. Check if two objects are in the same component.

Union command. Replace components containing two objects with their union.

Union-find data type (API)

Goal. Design efficient data structure for union-find.
- Number of objects N can be huge.
- Number of operations M can be huge.
- Find queries and union commands may be intermixed.

```java
interface IUnionFind {
    void union(int p, int q); // add connection between p and q
    boolean connected(int p, int q); // are p and q in the same component?
    int find(int p); // component identifier for p (0 to N-1)
    int components(); // number of components
}
```

Dynamic-connectivity client

- Read in number of objects N from standard input.
- Repeat:
 - read in pair of integers from standard input
 - write out pair if they are not already connected

```java
public static void main(String[] args) {
    int N = StdIn.readInt();
    UF uf = new UF(N);
    while (!StdIn.isEmpty()) {
        int p = StdIn.readInt();
        int q = StdIn.readInt();
        if (uf.connected(p, q)) continue;
        uf.union(p, q);
        StdOut.println(p + " " + q);
    }
}
```

% more tiny.txt

```
10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7
```
Quick-find [eager approach]

Data structure.
• Integer array \(id[i]\) of size \(N\).
• Interpretation: \(p\) and \(q\) in same component iff they have the same id.

\[
\begin{array}{cccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
 id[i] & 0 & 1 & 9 & 9 & 9 & 6 & 6 & 7 & 8 \\
\end{array}
\]

5 and 6 are connected
2, 3, 4, and 9 are connected

\[
\begin{array}{cccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
 id[i] & 0 & 1 & 9 & 9 & 9 & 6 & 6 & 7 & 8 \\
\end{array}
\]

id\[3\] = 9; id\[6\] = 6
3 and 6 in different components

Find. Check if \(p\) and \(q\) have the same id.

Union. To merge sets containing \(p\) and \(q\), change all entries with \(id[p]\) to \(id[q]\).

Quick-find example

\[
\begin{array}{cccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
 id[i] & 0 & 1 & 6 & 6 & 6 & 6 & 7 & 8 & 6 \\
\end{array}
\]

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

\[
\begin{array}{cccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
 id[i] & 0 & 1 & 6 & 6 & 6 & 6 & 7 & 8 & 6 \\
\end{array}
\]

id\[p\] and id\[q\] differ, so union() changes entries equal to id\[p\] to id\[q\] (in red)

id\[p\] and id\[q\] match, so no change
Quick-find: Java implementation

```java
public class QuickFindUF {
    private int[] id;
    public QuickFindUF(int N) {
        id = new int[N];
        for (int i = 0; i < N; i++)
            id[i] = i;
    }
    public boolean connected(int p, int q) {
        return id[p] == id[q];
    }
    public void union(int p, int q) {
        int pid = id[p];
        int qid = id[q];
        for (int i = 0; i < id.length; i++)
            if (id[i] == pid) id[i] = qid;
    }
}
```

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>init</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>N</td>
<td>1</td>
</tr>
</tbody>
</table>

Quick-find defect.
- Union too expensive.
- Trees are flat, but too expensive to keep them flat.
- Ex. Takes N^2 array accesses to process sequence of N union commands on N objects.

Quadratic algorithms do not scale

Rough standard (for now).
- 10^9 operations per second.
- 10^9 words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.
- 10^9 union commands on 10^9 objects.
- Quick-find takes more than 10^{18} operations.
- 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.
- New computer may be 10x as fast.
- But, has 10x as much memory so problem may be 10x bigger.
- With quadratic algorithm, takes 10x as long!
Quick-union [lazy approach]

Data structure.
- Integer array $id[]$ of size N.
- Interpretation: $id[i]$ is parent of i.
- Root of i is $id[id[id[...id[i]...]]]$.

Find. Check if p and q have the same root.

Union. To merge sets containing p and q, set the id of p's root to the id of q's root.

Quick-union example

```
<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>id[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0 1 2 3 5 5 5 7 8 9</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0 1 2 3 5 5 5 7 8 8</td>
</tr>
</tbody>
</table>
```

- 3 and 5 are in different components
Quick-union example

<table>
<thead>
<tr>
<th>id[]</th>
<th>p q 0 1 2 3 4 5 6 7 8 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9 1 1 8 3 5 5 7 8 8</td>
</tr>
<tr>
<td>5 0</td>
<td>1 1 8 3 5 5 7 8 8</td>
</tr>
<tr>
<td></td>
<td>0 1 1 8 3 0 5 7 8 8</td>
</tr>
<tr>
<td>7 2</td>
<td>0 1 1 8 3 0 5 7 8 8</td>
</tr>
<tr>
<td>6 1</td>
<td>0 1 1 8 3 0 5 1 8 8</td>
</tr>
<tr>
<td></td>
<td>1 1 1 8 3 0 5 1 8 8</td>
</tr>
<tr>
<td>1 0</td>
<td>1 1 1 8 3 0 5 1 8 8</td>
</tr>
<tr>
<td>6 7</td>
<td>1 1 1 8 3 0 5 1 8 8</td>
</tr>
</tbody>
</table>

Quick-union: Java implementation

```java
public class QuickUnionUF {
    private int[] id;

    public QuickUnionUF(int N) {
        id = new int[N];
        for (int i = 0; i < N; i++) id[i] = i;
    }

    private int root(int i) {
        while (i != id[i]) i = id[i];
        return i;
    }

    public boolean connected(int p, int q) {
        return root(p) == root(q);
    }

    public void union(int p, int q) {
        int i = root(p), j = root(q);
        id[i] = j;
    }
}
```

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>init</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>N</td>
<td>N†</td>
<td>N†</td>
</tr>
</tbody>
</table>

又好又慢

† includes cost of finding root

Quick-find defect.
- Union too expensive (N array accesses).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.
- Trees can get tall.
- Find too expensive (could be N array accesses).
Weighted quick-union.
- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of objects).
- Balance by linking small tree below large one.

Weighted quick-union examples

Data structure. Same as quick-union, but maintain extra array `sz[i]` to count number of objects in the tree rooted at `i`.

Find. Identical to quick-union.

```
return root(p) == root(q);
```

Union. Modify quick-union to:
- Merge smaller tree into larger tree.
- Update the `sz[]` array.

```
int i = root(p);
int j = root(q);
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else                { id[j] = i; sz[i] += sz[j]; }
```
Running time.
• Find: takes time proportional to depth of \(p \) and \(q \).
• Union: takes constant time, given roots.

Proposition. Depth of any node \(x \) is at most \(\lg N \).

![Diagram showing depth of node x is 3, \(\lg N \) is approximately 3.45]

Improvement 2: path compression

Just after computing the root of \(p \), set the id of each examined node to point to that root.

Quick union with path compression. Just after computing the root of \(p \), set the id of each examined node to point to that root.

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.
Path compression: Java implementation

Standard implementation: add second loop to `find()` to set the `id[]` of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other node in path point to its grandparent.

```java
public int root(int i) {
    while (i != id[i]) {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
```

In practice. No reason not to! Keeps tree almost completely flat.

Weighted quick-union with path compression example

![Weighted quick-union with path compression example](image)

Path compression: amortized analysis

Proposition. Starting from an empty data structure, any sequence of \(M\) union-find operations on \(N\) objects makes at most proportional to \(N + M \log^* N\) array accesses.

- Proof is very difficult.
- Can be improved to \(N + M \alpha(M, N)\).
- But the algorithm is still simple!

Linear-time algorithm for \(M\) union-find ops on \(N\) objects?

- Cost within constant factor of reading in the data.
- In theory, WQU is not quite linear.
- In practice, WQU is linear.

Amazing fact. No linear-time algorithm exists.

![Boo Tarjan](image)

Summary

Bottom line. WQU makes it possible to solve problems that could not otherwise be addressed.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst-case time</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>(M N)</td>
</tr>
<tr>
<td>quick-union</td>
<td>(M N)</td>
</tr>
<tr>
<td>weighted QU</td>
<td>(N + M \log N)</td>
</tr>
<tr>
<td>QU + path compression</td>
<td>(N + M \log N)</td>
</tr>
<tr>
<td>weighted QU + path compression</td>
<td>(N + M \log^* N)</td>
</tr>
</tbody>
</table>

Ex. \([10^6 \text{ unions and finds with } 10^9 \text{ objects}]\)

- WQU reduces time from 30 years to 6 seconds.
- Supercomputer won’t help much; good algorithm enables solution.