Reinforcement Learning
(Lecture 2)

Ron Parr
CPS 271

RL Highlights

- Everybody likes to learn from experience
- Use ML techniques to generalize from *relatively small amounts* of experience

- Some notable successes:
 - Backgammon
 - Flying a helicopter upside down

- Sutton’s seminal RL paper is 88th most cited ref. in computer science (Citeseerx 10/09); Sutton & Barto RL Book is the 14th most cited
Comparison w/Other Kinds of Learning

- Learning often viewed as:
 - Classification (supervised), or
 - Model learning (unsupervised)

- RL is between these (delayed signal)

- What the last thing that happens before an accident?

Overview

- Review of value determination

- Motivation for RL

- Algorithms for RL
 - Overview
 - TD
 - Q-learning
 - Approximation
Recall Our Game Show

Start $100

1 correct $1,000

2 correct $10,000

2 correct $100,000

$100

$1,100

$11,100

Optimal Policy w/o Cheating

V=$3,750 V=$4,166 V=$5,555 V=$11,100

9/10

3/4

1/2

1/10

$0

$0

$0

$0

$0

$100

$1,100

$11,100

$111,100
Cheat until you win policy

\[V = \begin{align*}
&3,749 \quad 4,166 \quad 5,555 \quad 11,111 \\
&32,474 \quad 32,582 \quad 32,950 \quad 34,430 \\
\end{align*} \text{ w/o cheat} \]

\[
\text{\$1,000}
\]

Solving for Values

\[V_{\pi} = \gamma P_{\pi} V_{\pi} + R_{\pi} \]

For moderate numbers of states we can solve this system exactly:

\[
V_{\pi} = (I - \gamma P_{\pi})^{-1} R_{\pi} \]

Guaranteed invertible because \(\gamma P_{\pi} \)
has spectral radius < 1
Iteratively Solving for Values

\[V_{\pi} = \gamma P_{\pi} V + R \]

For larger numbers of states we can solve this system indirectly:

\[V_{\pi}^{i+1} = \gamma P_{\pi} V_{\pi}^i + R \]

Guaranteed convergent because \(\gamma P_{\pi} \)
has spectral radius \(<1\) for \(\gamma < 1 \)

Convergence not guaranteed for \(\gamma = 1 \)

Overview

- Review of value determination
- Motivation for RL
- Algorithms for RL
 - Overview
 - TD
 - Q-learning
 - Approximation
Why We Need RL

• Where do we get transition probabilities?

• How do we store them?
 • Big problems have big models
 • Model size is quadratic in state space size

• Where do we get the reward function?

RL Framework

• Learn by “trial and error”
• No assumptions about model
• No assumptions about reward function
• Assumes:
 – True state is known at all times
 – Immediate reward is known
 – Discount is known
RL Schema

- Act
- Perceive results
- Update something
- Repeat

RL for Our Game Show

- Problem: We don’t know probability of answering correctly

- Solution:
 - Buy the home version of the game
 - Practice on the home game to refine our strategy
 - Deploy strategy when we play the real game
Model Learning Approach

• Learn model, solve
• How to learn a model:
 – Take action a in state s, observe s’
 – Take action a in state s, n times
 – Observe s’ m times
 – \(P(s'|s,a) = m/n \)
 – Fill in transition matrix for each action
 – Compute avg. reward for each state
• Solve learned model as an MDP

Limitations of Model Learning

• Partitions learning, solution into two phases
• Model may be large (hard to visit every state lots of times)
 – Note: Can’t completely get around this problem...
• Model storage is expensive
• Model manipulation is expensive
Overview

• Review of value determination

• Motivation for RL

• Algorithms for RL
 – Overview
 – TD
 – Q-learning
 – Approximation

First Idea: Monte Carlo Sampling

• Assume that we have a black box:

 \[
 S \rightarrow S' \n \]

• Count the number of times we see each \(s' \)
 – Estimate \(P(s' \mid s) \) for each \(s' \)
 – Essentially learns a mini-model for state \(s \)
 – Can think of as numerical integration

• Problem: The world doesn’t work this way
Next Idea: Temporal Differences

- One of the first RL algorithms
- Learn the value of a \textit{fixed} policy (no optimization; just prediction)
- Recall iterative value determination:

\[V_{\pi}^{i+1}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' | s, \pi(s)) V_{\pi}^i(s') \]

Problem: We don’t know this.

Temporal Difference Learning

- Remember Value Determination:

\[V^{i+1}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' | s, \pi(s)) V^i(s') \]

- Compute an update \textit{as if the observed s’ and r were the only possible outcomes}:

\[V^{\text{temp}}(s) = r + \gamma V^i(s') \]

- Make a small update in this direction:

\[V^{i+1}(s) = (1 - \alpha)V^i(s) + \alpha V^{\text{temp}}(s) \]

\[0 < \alpha \leq 1 \]
Example: Home Version of Game

Suppose we guess: $V(s_3)=15K$
We play and get the question wrong

$V_{\text{temp}}=0$
$V(s_3) = (1-\alpha)15K + \alpha0$

Convergence?

- Why doesn’t this oscillate?
 - e.g. consider some low probability $s’$ with a very high (or low) reward value

 - This could still cause a big jump in $V(s)$
Convergence Intuitions

- Need heavy machinery from stochastic process theory to prove convergence
- Main ideas:
 - Iterative value determination converges
 - Updates approximate value determination
 - Samples approximate expectation

\[V^{i+1}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' | s, \pi(s)) V^i(s') \]

Ensuring Convergence

- Rewards have bounded variance
- \(0 \leq \gamma < 1 \)
- Every state visited infinitely often
- Learning rate decays so that:
 - \(\sum_{s} \alpha_i(s) = \infty \)
 - \(\sum_{s} \alpha_i^2(s) < \infty \)

These conditions are jointly sufficient to ensure convergence in the limit with probability 1.
How Strong is This?

- Bounded variance of rewards: easy
- Discount: standard
- Visiting every state infinitely often: Hmm...
- Learning rate: Often leads to slow learning
- Convergence in the limit: Weak
 - Hard to say anything stronger w/o knowing the mixing rate of the process
 - Mixing rate can be low; hard to know a priori

Using TD for Control

- Recall value iteration:
 \[V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^i(s') \]

- Why not pick the maximizing \(a \) and then do:
 \[V^{i+1}(s) = (1 - \alpha) V^i(s') + \alpha V^\text{temp}(s') \]

 - \(s' \) is the observed next state after taking action \(a \)
Problems

- Pick the best action w/o model?

- Must visit every state infinitely often
 - What if a good policy doesn’t do this?

- Learning is done “on policy”
 - Taking random actions to make sure that all states are visited will cause problems

Q-Learning Overview

- Want to maintain good properties of TD

- Learns good policies and optimal value function, not just the value of a fixed policy

- Simple modification to TD that learns the optimal policy regardless of how you act! (mostly)
Q-learning

• Recall value iteration:

\[V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^i(s') \]

• Can split this into two functions:

\[Q^{i+1}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^i(s') \]

\[V^{i+1}(s) = \max_a Q^{i+1}(s,a) \]

Q-learning

• Store Q values instead of a value function
• Makes selection of best action easy
• Update rule:

\[Q_{\text{temp}}^{i}(s,a) = r + \gamma \max_{a'} Q^i(s',a') \]

\[Q^{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q_{\text{temp}}^{i}(s,a) \]
Q-learning Properties

- Converges under same conditions as TD
- Still must visit every state infinitely often
- Separates policy you are currently following from value function learning:

 \[Q^{\text{temp}}(s,a) = r + \gamma \max_{a'} Q(s',a') \]

 \[Q^{i+1}(s,a) = (1 - \alpha) Q(s,a) + \alpha Q^{\text{temp}}(s,a) \]

Value Function Representation

- Fundamental problem remains unsolved:
 - TD/Q learning solves model-learning problem, but
 - Large models still have large value functions
 - Too expensive to store these functions
 - Impossible to visit every state in large models

- Function approximation
 - Use machine learning methods to generalize
 - Avoid the need to visit every state
Updates with Approximation

- Recall regular TD update:
 \[V^{i+1}(s) = (1 - \alpha)V^i(s) + \alpha V^{temp}(s) \]

- With function approximation:
 \[V(s) = V(s, \theta) \]

- Update:
 \[
 \theta^{i+1} = (1 - \alpha)\theta^i + \alpha V^{temp}(s)\n \]

For linear value functions

- Gradient is trivial:
 \[
 V(s, \theta) = \sum_{j=1}^{k} \theta_j \phi_j(s)
 \]
 \[
 \nabla_{\theta_j} V(s, \theta) = \phi_j(s)
 \]

- Update is trivial:
 \[
 \theta_j^{i+1} = (1 - \alpha)\theta_j^i + \alpha V^{temp}(s)\phi_j(s)
 \]
Properties of approximate RL

- Table-updates are a special case
- Can be combined with Q-learning

- Convergence not guaranteed
 - Policy evaluation with linear function approximation converges if samples are drawn “on policy”
 - Ordinary neural nets converge to local opt
 - NN + RL convergence not guaranteed
 - Chasing a moving target
 - Errors can compound
- Success requires very well chosen features

Other Approaches

- TD, Q-learning approximate value iteration
- Typically use parameterized \(V \)

- Can also approximate policy iteration

- See Lagoudakis & Parr’s Least Squares Policy Iteration (LSPI)
How’d They Do That???

- Backgammon (Tesauro)
 - Neural network value function approximation
 - TD sufficient (known model)
 - Carefully selected inputs to neural network
 - About 1 million games played against self
- Helicopter (Ng et al.)
 - Approximate policy iteration
 - Constrained policy space
 - Trained on a simulator

Swept under the rug...

- Difficulty of finding good features
- Partial observability
- Exploration vs. Exploitation
Conclusions

• Reinforcement learning solves an MDP

• Converges for exact value function representation

• Can be combined with approximation methods

• Good results require good features