Bio & Nano Methods

- Biology, Molecular biology
 - Enzymatic procedures
 - Cell biology
 - Chemistry & Biochemistry

- Nano-scale Analysis & Manipulation
 - Electron microscopy (TEM, SEM)
 - Local probe methods (STM, AFM, SPM)
 - QCM, SPR, SERS, NSOM
Biological Methods

- Enzymes. Biochem. ELISA. IRMA.
- DNA/Protein manipulations.
 - PCR, random and site-specific mutagenesis.
 - Alanine-scanning mutagenesis.
 - Circular permutation.
- Cell/tissue culture methods.
- PAGE, FACS, FRET.
- Microscopy.
DNA modifying enzymes

- Ligase
- Phosphatase, Kinase
- Polymerase (DNA, RNA, RT)
- Nuclease (Endo, Exo)
- Restriction Endonucleases, Methylase
- Topoisomerase, gyrase
- DNA binding and repair enzymes
Ligase

- Repairs nicks in phosphodiester backbone.
- Overlapped or blunt-end.
- 5’ phosphate required.
Phosphatase, Kinase

- Phosphatase removes 5’ phosphate. AlkPhos. CAP.
- Kinase adds 5’ phosphate. Also catalyses phosphate exchange reaction useful for radiolabeling. PNK.
DNA Polymerases

- Replication
- PCR

Example sources:
- T7, T4, thermophiles

Also:
- reverse transcriptase

- 5’ to 3’ DNA synthesis (template and primer required).
- Proofreading:
 - 3’ to 5’ exonuclease activity
 - 5’ to 3’ exonuclease activity
Restriction endonucleases

- Discovered by “restriction” of mating types in bacteria.
- “Internal cuts” of DNA phosphodiester backbone.
- Usually palindromic recognition sequences.
- Paired with methylase enzymes to protect DNA from cleavage.
Proteins that act on DNA (cont.)

- Topoisomerase (topo I)
 - Remove DNA supercoils by mechanism involving single-strand break. Tyr-phosphate transesterase.

- Gyrase (e. coli topo II)
 - Introduce supercoiling by 2-strand break mechanism

- Holliday Junction -binding protein

- SS-binding protein

- Rec A

- DNA repair enzymes
Photochemistry

The diagram illustrates a reaction involving molecule X. Under UV light, molecule X is converted into a product with a nitro group and another molecule X. The reaction involves a nitro group being replaced by a nitroso group.

- Inactive 2-nitrobenzyl derivative of molecule X (caged X)
- 2-nitrobenzaldehyde by-product
- Free, active molecule X

Nano & Surface Methods

- Microscopies
 - Optical, EM, SPM, NSOM

- Nanofabrication
 - Electron beam, dip-pen
 - Imprint stamping
 - Direct write (2D, 3D)

- Other
 - QCM, SPR
Optical Microscope; EM
Fluorescence Microscopy

1. **First barrier filter**: lets through only blue light with a wavelength between 450 and 490 nm.

2. **Beam-splitting mirror**: reflects light below 510 nm but transmits light above 510 nm.

3. **Second barrier filter**: cuts out unwanted fluorescent signals, passing the specific green fluorescein emission between 520 and 560 nm.

Chemical Structures:
- **Fluorescein (green)**
- **Tetramethylrhodamine (red)**

Microscope Images:
- **Tubulin**
- **Actin**
- **DNA**

Scale: 50 μm
Confocal Microscopy

Size scale
Four major tools for nanotech

<table>
<thead>
<tr>
<th></th>
<th>Imaging Methods</th>
</tr>
</thead>
</table>
| **STM** (Scanning Tunneling Microscope) | (i) imaging (atomic scale resolution)
(ii) direct electrical measurement |
| **AFM** (Atomic Force Microscope) | (i) imaging,
(ii) direct electrical measurement
(iii) dip-pen nanolithography |
| **SEM** (Scanning Electron Microscope) | (i) imaging,
(ii) element analysis
(iii) *e-beam lithography* |
| **TEM** (Transmission Electron Microscope) | (i) imaging (atomic scale resolution)
(ii) element analysis |

http://www.microscopy.ethz.ch/methods.htm
STM

- Local probe. Brought together known materials and techniques.
- Tunneling junction gives atomic resolution.
- Electronic-mechanical hybrid.

LaBe

FIG. 2. (Color) STM image of a quantum corral for electrons built with 48 iron atoms on copper. The same tip is used to position the iron atoms into a 12.4-nm-diameter ring and to image them and the wave-structure interior caused by the confined surface-state copper electrons. Courtesy D. Eigler, IBM Research Center, Almaden, CA.
Atomic force microscopy (AFM)

AKA: SPM

Also note: force spectroscopy, dip-pen nanolithography
DPN (dip-pen nanolithography)
Scanning electron microscopy (SEM)

- Electron Gun Unit
- Demagnification Unit
- Detection Unit

Electron beam lithography:
- e-beam
- development
- metallisation
- lift-off
TEM

Figure 2.

2/28/06 LaBean COMPSCI 296.5
TEM, sample

copper grid covered with carbon and/or plastic film

specimen in ribbon of thin sections

3 mm

TEM, shadow

1. Specimen on support

2. Heavy metal evaporated from a filament "shadows" the specimen

3. A strengthening film of carbon evaporated from above

4. The replica is floated onto the surface of a powerful solvent to dissolve away the specimen

5. The replica is washed and picked up on a copper grid for examination

Energy dispersive X-ray microanalysis (EDX, EDXS, EDS)

The collected datacube contains 2.5 million X-rays and was acquired for 30 minutes. Data from the SmartMap file has been used to reconstruct X-ray maps for the major elements in the sample: including titanium (orange), and aluminium (green) (Figure 8a). Representative spectra describing the different phases clearly identify the aluminum oxide (Figure 8b) and titanium carbide (Figure 8c).
Spectra have been reconstructed from 20nm square areas across a TiC grain to study the chemistry at grain boundaries in this ceramic material (Figure 9). Using the quantitative linescan software in INCAEnergyTEM, the chemistry variations across these grain boundaries can be determined (Figure 10).
Electron energy loss spectroscopy

How EELS works

- (S)TEM probe electrons travel through a thin specimen
- Probe electrons lose energy due to their interaction with the specimen (inelastic scattering)
- The energy-losses are characteristic of the elements and chemistry of the specimen
- An EELS Spectrometer can disperse the probe electron beam according to its lost energies into a spectrum
EELS

Atomic view of sample

Probe electron (Energy = E₀)

ΔE₁ - Energy transferred from probe electron to electron in sample (The “Energy Lost”)

ΔE₂ - Energy of electron in sample

Eₖ - Binding energy of electron in sample

Automated EELS elemental analysis

Gatan software performs fully automated absolute and relative elemental quantification

Spectrum Display

Atomic ratios
Ba/O: 0.16 ± 0.024 Cu/O: 0.18 ± 0.017

Analytical Results

Summary of atomic ratios
Ba/O: 0.16 ± 0.024 Cu/O: 0.18 ± 0.017

2/28/06
EDXS and EELS comparisons

<table>
<thead>
<tr>
<th>(S)TEM EDS X-ray</th>
<th>(S)TEM EELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-rays provide elemental information only</td>
<td>EELS provides elemental, chemical & dielectric information</td>
</tr>
<tr>
<td>Inefficient signal collection; inefficient low Z signal generation & detection</td>
<td>Very efficient in all aspects</td>
</tr>
<tr>
<td>▪ Slow mapping or poor S/N</td>
<td>▪ Higher sensitivity to most elements</td>
</tr>
<tr>
<td>▪ X-ray spectra can contain artifact information from column and other parts of sample</td>
<td>▪ Very fast mapping technique</td>
</tr>
<tr>
<td>▪ High detection efficiency for higher Z elements</td>
<td>▪ EELS information is highly localized and does not contain sample or column artifacts</td>
</tr>
<tr>
<td>▪ Poor sensitivity to Z<10</td>
<td>▪ High detection efficiency for lower Z elements</td>
</tr>
<tr>
<td>▪ Energy resolution > 120eV causes frequent overlaps</td>
<td>▪ Poor sensitivity to a few high Z elements</td>
</tr>
<tr>
<td>▪ No sample thickness limitations</td>
<td>▪ Energy resolution 0.3-2eV gives far fewer overlaps (overlaps when edges ~<30eV apart)</td>
</tr>
<tr>
<td>▪ Sample thickness is important - should be less than ~100nm @ 200keV</td>
<td></td>
</tr>
</tbody>
</table>
Auger Electron Spectroscopy

1. Ionization: A hole in an inner shell (here: K shell) is generated by an incident high-energy electron that loses the corresponding energy \(E \) transferred to the ejected electron.

2. Auger-electron emission: The hole in the K shell is filled by an electron from an outer shell (here: L\(_1\)). The superfluous energy is transferred to another electron (here: L\(_3\)) which is subsequently ejected as Auger electron.

Since Auger electrons have an energy in the range of some 100 eV to a few KeV, they are strongly absorbed by the specimen. Consequently, only Auger electron from the surface can be measured, making Auger spectroscopy a surface method.
XPS

- X-ray Photoelectron Spectroscopy (XPS) is able to analyze the chemical composition of various material surfaces up to 1 nm depth.
- X-ray bombardment of surface leads to electron ejection. Detectors analyze the characteristic energy of the electrons and determine the type of atom (and its chemical state) from which it came.
- Images with tens of microns resolution.
Piezoelectric quartz microbalance: A quartz disk ~1 cm in diameter and ~.1 mm thick with circular gold electrodes in the center of each face. When an A.C. voltage is applied across the electrodes the crystal oscillates in a thickness shear mode in which the two faces move parallel to each other and in opposite directions.

Used in this way the quartz becomes a mechanical resonator. Any adsorbed film on the electrodes will make the resonator heavier and so lower it’s resonant frequency. A film thickness measurement is made by monitoring this frequency shift. The crystals used for these experiments were usually driven at their third harmonic \(f_{0,3} \sim 5.5 \) MHz.
SPR
Surface Plasmon Resonance. (Biacore)

- Kinetic Rate Analysis: How FAST?
 - \(k_a, k_d \)
 - \(K_D = \frac{k_d}{k_a}, K_A = \frac{k_a}{k_d} \)

- Concentration Analysis: How MUCH?
 Active Concentration
 Solution Equilibrium
 Inhibition

Affinity Analysis: HOW STRONG?
- \(K_D, K_A \)
- Relative Ranking

- Yes/No Data
 - Ligand Fishing

Total internal reflectance (TIR) at interface of differing refractive indices. Angle of incidence above a critical value get TIR. Evanescent field (E) is setup.
Biacore’s proprietary SPR technology

- Non-label
- Real-time
- Unique, high quality data on molecular interactions
- Simple assay design
- Robust and reproducible
- Walk-away automation
- Small amount of sample required
Biomolecular Binding in Real Time

Principle of Detection

![Diagram showing the principle of detection with light-source, polarized light, prism, optical detection unit, sensor chip with gold film, flow channel, and sensorgram graphs for intensity and resonance signal over time and angle.]
Flexibility in Assay Design

- Multiple assay formats providing complementary data

Direct measurement
- Direct Binding Assay (DBA)

Indirect measurement
- Surface competition assay (SCA)
- Inhibition in solution assay (ISA)
SERS:
Surface Enhanced Raman Spectroscopy

- **The Raman Effect.** When light is scattered from a molecule most photons are elastically scattered. The scattered photons have the same energy (frequency) and wavelength as the incident photons. However, a small fraction of light (approximately 1 in 10^7 photons) is scattered at optical frequencies different from, and usually lower than, the frequency of the incident photons. The process leading to this inelastic scatter is termed the Raman effect. Raman scattering can occur with a change in vibrational, rotational or electronic energy of a molecule. Chemists are concerned primarily with the vibrational Raman effect. The difference in energy between the incident photon and the Raman scattered photon is equal to the energy of a vibration of the scattering molecule. A plot of intensity of scattered light versus energy difference is a Raman spectrum.

- **Resonance-Enhanced Raman Scattering.** Raman spectroscopy is conventionally performed with green, red or near-infrared lasers. The wavelengths are below the first electronic transitions of most molecules, as assumed by scattering theory. The situation changes if the wavelength of the exciting laser is within the electronic spectrum of a molecule. In that case the intensity of some Raman-active vibrations increases by a factor of 10^2-10^4. This resonance enhancement or resonance Raman effect can be quite useful.

- **Surface-Enhanced Raman Scattering.** The Raman scattering from a molecule adsorbed on or even within a few Angstroms of a structured metal surface can be 10^3-10^6X greater than in solution. This surface-enhanced Raman scattering is strongest on silver, but is observable on gold and copper. SERS arises from
 - 1) enhanced electromagnetic field at the surface of the metal (wavelength of the incident light is close to the plasma wavelength of the metal, conduction electrons in the metal surface are excited into an extended surface electronic excited state called a surface plasmon resonance). Molecules adsorbed or in close proximity to the surface experience an exceptionally large electromagnetic field. Vibrational modes normal to the surface are most strongly enhanced.
 - 2) formation of a charge-transfer complex between the surface and analyte molecule. The electronic transitions of many charge transfer complexes are in the visible, so that resonance enhancement occurs. Molecules with lone pair electrons or pi clouds show the strongest SERS.