G is for …

• Git
 • Version control that's ubiquitous

• Garbage Collection
 • Java recycles

• Google
 • How to find Stack Overflow
Announcements

• Assignment P1 due yesterday
 • You are in the grace period through midnight

• APT-3 due Tues, Feb 4
 • Can still turn in Friday til 11:59pm

• Discussion 4 on Feb 3
 • Prediscussion, do before, out today

• Reading on calendar
 • Slowing down ….. Nothing posted…
Plan for the Day

• Generic classes: ArrayList to HashSet
 • From ArrayList to HashSet to Collections to …

• From Object.equals to Object.hashCode
 • Everything is an Object, what can an object do?

• Maps, Interfaces, Analysis
 • Next week and next assignment
ArrayList Review

• What is an ArrayList?
 • A class that "wraps an array"
 • Part of java.util.Collections hierarchy
 • Almost an array: \textit{constant-time} access to any element given an index (independent of N)

• How are elements added?
 • New array allocated, values copied, continue
DIYAD ArrayList

- **Do It Yourself Algorithm and Datastructure**
 - SimpleStringArrayList: some methods
 - GrowableStringArrayList: more methods

- Differences between +100, +1000, and *2
 - Helper methods are private: `checkSize()`
SimpleStringArrayList

- DIYAD - I want to write an ArrayList class
- State to define an array
- Methods to
 - Constructor - Create an array – fixed size
 - Add an element to an array
 - Get an element from an array
public class SimpleStringArrayList {

 private String[] myStorage;
 private int mySize;
 private static int MAX_SIZE = 10000;

 public SimpleStringArrayList() {
 myStorage = new String[MAX_SIZE];
 mySize = 0;
 }

 public void add(String s) {
 if (mySize < myStorage.length) {
 myStorage[mySize] = s;
 mySize++;
 } else {
 throw new ArrayIndexOutOfBoundsException("out of storage at "+mySize);
 }
 }
}
public int size() {
 return mySize;
}

public String get(int index) {
 if (0 <= index && index < mySize) {
 return myStorage[index];
 }
}

 throw new ArrayIndexOutOfBoundsException("out of range with "+index);
}
GrowableStringArrayList

- DIYAD – write another ArrayList Class
DIYAD ArrayList

• Do It Yourself Algorithm and Datastructure
 • SimpleStringArrayList: some methods
 • GrowableStringArrayList: more methods

• Differences between these two classes?
 • Growable – grows as needed, not static
public class GrowableStringArrayList {
 private String[] myStorage;
 private int mySize;
 private final static int MAX_SIZE = 500;

 public GrowableStringArrayList() {
 myStorage = new String[MAX_SIZE];
 mySize = 0;
 }

 public void add(String s) {
 checkSize();
 myStorage[mySize] = s;
 mySize++;
 }
}
private void checkSize() {
 if (mySize >= myStorage.length) {
 String[] storage = new String[(int)(myStorage.length * 2)];
 System.arraycopy(myStorage, i: 0, storage, i1: 0, myStorage.length);
 myStorage = storage;
 }
}

public void add(int index, String s) {
 if (index < 0 || index > mySize) {
 throw new IndexOutOfBoundsException("bad index in add "+index);
 }
 checkSize();
 System.arraycopy(myStorage, index, myStorage, i1: index+1, i2: mySize-index);
 myStorage[index] = s;
 mySize++;
}

public int size() { return mySize; }
GrowableStringArrayList (part 3)

```java
public String get(int index) {
    rangeCheck(index);
    return myStorage[index];
}

public String set(int index, String s) {
    rangeCheck(index);
    String old = myStorage[index];
    myStorage[index] = s;
    return old;
}

private void rangeCheck(int index) {
    if (index < 0 || index >= mySize) {
        throw new IndexOutOfBoundsException("index out of bounds " + index + " of " + mySize);
    }
}
```
Analysis via Pictures Again

- Growing array by doubling each time
 - Create/copy 1, 2, 4, 8, 16, ... \(2^N\)
- If \(X = 2^N\), we've created \(2 \times 2^N - 1\), or \(2X - 1\)
 - Roughly \(X\), where "roughly" defined later

\[N = 2^k \text{ elements in last row, total is ... } \]
Analysis of Diyad ArrayLists

- **SimpleStringArrayList**
 - Add 10,000 strings? ok. Add one more? BAD

- **GrowableStringArrayList**
 - Add as many strings as memory allows, how?

- **ConformingArrayList**
 - Is-a java.util.List, also stores any Object type
 - Must implement List methods, interface
DIYAD Ideas

• Move from String to GrowableString to Generic
 • Lots of work to fit in with Collections hierarchy
 • For our own work? Easier! All of Java? Harder!

• Differences between +10, +1000, *2 and * 1.2
 • How do we measure empirically
 • How do we measure analytically
 • Private method checkSize()
Diyad ArrayList Growth

- When internal array full? Create new, copy, use
 - Efficient add, get, set when done repeatedly
 - Not efficient if resize with +1, +100, +1000
 - Is possible if resize with *2 or *1.25

```java
public void add(String s) {
    checkSize();
    myStorage[mySize] = s;
    mySize++;
}

private void checkSize() {
    if (mySize >= myStorage.length) {
        String[] storage = new String[(int)(myStorage.length +10000)];
        System.arraycopy(myStorage, srcPos: 0, storage, destPos: 0, myStorage.length);
        myStorage = storage;
    }
}
```
Analysis with Math+Pictures

• If we grow by adding 1 (or 100 or 1000)
 • Copy 1, then 2, then 3, then \(\ldots \) then \(N \)
• \[1+2+\ldots+N = \frac{N(N+1)}{2} \]
 • Same as 100+200+300+\ldots
 • Roughly \(N^2 \)
 • Divide by 2, multiply by 100
Analysis via Math+Pictures Again

- Growing array by doubling each time
 - Create/copy 1, 2, 4, 8, 16, ... \(2^N\)
 - Total is \(1+2+\ldots+2^N = 2^{N+1}-1\)
- If \(X = 2^N\), we've created \(2 \times 2^N - 1\), or \(2X - 1\)
 - Roughly \(X\), where "roughly" defined later

\[N = 2^k\text{ elements in last row, total is ...}\]
Runtimes summarized

- **Re-sizing geometrically and additively**
 - Allocate new array, copy all pointers/references

<table>
<thead>
<tr>
<th>Size</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000000</td>
<td>0.028</td>
</tr>
<tr>
<td>2000000</td>
<td>0.037</td>
</tr>
<tr>
<td>3000000</td>
<td>0.053</td>
</tr>
<tr>
<td>4000000</td>
<td>0.066</td>
</tr>
<tr>
<td>5000000</td>
<td>0.117</td>
</tr>
<tr>
<td>6000000</td>
<td>0.121</td>
</tr>
<tr>
<td>7000000</td>
<td>0.143</td>
</tr>
<tr>
<td>8000000</td>
<td>0.211</td>
</tr>
<tr>
<td>9000000</td>
<td>0.270</td>
</tr>
<tr>
<td>10000000</td>
<td>0.260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000000</td>
<td>0.051</td>
</tr>
<tr>
<td>2000000</td>
<td>0.087</td>
</tr>
<tr>
<td>3000000</td>
<td>0.117</td>
</tr>
<tr>
<td>4000000</td>
<td>0.153</td>
</tr>
<tr>
<td>5000000</td>
<td>0.218</td>
</tr>
<tr>
<td>6000000</td>
<td>0.338</td>
</tr>
<tr>
<td>7000000</td>
<td>0.303</td>
</tr>
<tr>
<td>8000000</td>
<td>0.398</td>
</tr>
<tr>
<td>9000000</td>
<td>0.452</td>
</tr>
<tr>
<td>10000000</td>
<td>0.468</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000000</td>
<td>1.507</td>
</tr>
<tr>
<td>2000000</td>
<td>1.585</td>
</tr>
<tr>
<td>3000000</td>
<td>2.740</td>
</tr>
<tr>
<td>4000000</td>
<td>5.146</td>
</tr>
<tr>
<td>5000000</td>
<td>7.304</td>
</tr>
<tr>
<td>6000000</td>
<td>8.315</td>
</tr>
<tr>
<td>7000000</td>
<td>10.428</td>
</tr>
<tr>
<td>8000000</td>
<td>14.233</td>
</tr>
<tr>
<td>9000000</td>
<td>21.434</td>
</tr>
<tr>
<td>10000000</td>
<td>21.927</td>
</tr>
</tbody>
</table>
Diyad ArrayList Summary

• If we grow additively: +1, or +100, or +1000
 • Performance is quadratic, for an array of N elements we expect N^2 time (allocate/copy)

• If we grow geometrically: *2, *1.2, *3
 • Performance is linear, for an array of N elements we expect N time (allocate copy)

• Ignore constants: $N^2/2$ or $100*N^2$ or $200N$ or …
WOTO

Coding is today's language of creativity. All our children deserve a chance to become creators instead consumers of computer science.

I personally believe that the most important thing we have to do today is use technology to address societal problems, especially in developing regions.

Maria Klawe

• President of Harvey Mudd
• Dean of Engineering at Princeton, ACM Fellow, College Dropout (and re-enroller)
Generic ConformingArrayList

• Rather than String, use generic type parameter
 • Can use E, T, Type, any identifier $<$E$>$
 • Similar to code for GrowableStringArrayList

• java.util.List
 • Interface
Can E be anything? String, Point, ...

- Method `.equals` that works as expected for E!
 - Internal array `myStorage` contains Objects
- `ConformingArrayList<String>`
 - What `.equals` is called? Object or String?
 - Runtime decision, *not compile time* decision
 - What does elt reference/point to? String!!!

```java
@Override
public boolean contains(Object o) {
    for (Object elt : myStorage) {
        if (elt.equals(o)) return true;
    }
    return false;
}
```
Why Diyad?

- Traditionally use ArrayList\(<E>\) -- *client* code
 - Understand methods via API
 - Problem solving in many contexts
- Efficiency: \(\text{a}.\text{get}(1)\) as fast as \(\text{a}.\text{get}(1000)\)

- Why efficient? Understanding by analysis
 - From the internal array which is efficient
 - From doubling on resize rather than adding one
Toward Applications

• We can speak with a limited vocabulary
 • Learn vocabulary then speak, then read

• We can also write code similarly
 • Eventually debugging may require understanding how `equals` works

Massive Data sets 🦅

• How do we find what #hashtags are trending on Twitter in real-time?
 • 6,000 tweets/second, 350,000/minute, …
 • Do we weight by tweeter-importance?

• Must be able to look up very quickly, cannot skim through all hashtags/all data
 • Conveniently, we use hashing and hash tables!
Toward Understanding HashSet

• Adding objects to HashSet<..>, avoid duplicates
 • We’ll see with Point class, doesn’t work
 • We’ll see with String class, does work
 • Just as we needed to add .equals() ...
 • We need to add .hashCode()

• Need some knowledge of Object and internals of HashSet<..>, how does set.add(x) work?
 • Every object can convert itself to a number
 • Ask not what you can do to an object …
Making `contains` efficient

- Why is `ArrayList.contains(..)` slow?
 - Search through entire list to find something
 - If list is sorted can we do better?
 - Think of a number between 1 and 1,024, I'll tell you high, low, correct: how many guesses needed?

- How do you search for a book in the stacks?
 - That's not what you do in the stacks?
 - What about in ancient times …
Simple Example Hashing
Want a mapping of Soc Sec Num to Names

• Duke’s CS Student Union wants to be able to quickly find out info about its members. Also add, delete and update members. Doesn't need members sorted.
 267-89-5431 John Smith
 703-25-6141 Jack Adams
 319-86-2115 Betty Harris
 476-82-5120 Rose Black
• Hash Table size is 0 to 10
• Possible Hash Function: \(H(\text{ssn}) = \text{last 2 digits mod 11} \)
Have a list of size 11 from 0 to 10

- Insert these into the list
- Insert as (key, value) tuple
 (267-89-5431, John Smith)
 (in example, only showing name)
Finding an Object's number ..

• Every object has `.hashCode()` method
 • Returns int value, used as “locker number”
 • Could return 39, 2, 57, … even -321
 • Ideally uses properties of object to compute

• Cannot guarantee different for every Object!
 • Search items in same locker
 • Use `.equals` find in locker
Ideal world? Real world!
Hash Metaphor and Pseudocode

• Finite number of lockers, or buckets, table entries
 • Each locker stores ArrayList for hash collisions
 • In real world, might be another structure in locker

• Given object, find it's locker/bucket number
 • locker # == \(o\text{.hashCode()} \mod table_size \)

• Search through locker to see if target there
 \(\text{for(}\text{Object } o:\ text{ locker}) \text{ if } o\text{.equals(target)} \)
Point.hashCode

• Convert a Point to a number
 • Try to make every point a different number
 • That's not possible!!
 • For method below, what non-equal points have same .hashCode()?

```java
@Override
public int hashCode() {
    return (int) (myX*1000 + myY);
}
```
Inefficient but Correct .hashCode

- Suppose .hashCode() simply returns 5
 - Every Point goes in the same locker
 - There are always collisions, but we try to minimize them. How are collisions resolved?

- Can we modify PointDriver.java to stress-test?
 - How many different points can be made?
The hashCode contract

- Every object has `.hashCode()` method
 - Inherited from Object, but typically overridden
 - Use `@Override` and read online

- Must respect `.equals()`: If `a.equals(b) ?`
 - `a.hashCode() == b.hashCode()`
 - Converse not true! There will be collisions
When Strings Collide

- Generate strings that will collide
 - Find such strings in the wild
 - http://hg.openjdk.java.net/jdk7u/jdk7u6/jdk/file/8c2c5d63a17e/src/share/classes/java/lang/String.java

<table>
<thead>
<tr>
<th>String</th>
<th>hashCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ayay</td>
<td>3009136</td>
</tr>
<tr>
<td>ayBZ</td>
<td>3009136</td>
</tr>
<tr>
<td>bZay</td>
<td>3009136</td>
</tr>
<tr>
<td>bZbZ</td>
<td>3009136</td>
</tr>
<tr>
<td>buzzards</td>
<td>-931102253</td>
</tr>
<tr>
<td>righto</td>
<td>-931102253</td>
</tr>
<tr>
<td>snitz</td>
<td>109586548</td>
</tr>
<tr>
<td>unprecludible</td>
<td>109586548</td>
</tr>
</tbody>
</table>
WOTO (correctness counts)

Work in 201

• How important are APTs?
 • How important are APT quizzes?

• How important are assignments?
 • Earlier assignments, later assignments?

• How important: reading and WOTO in-class
 • How important are reading quizzes?