Relational Database Design using E/R
Introduction to Databases
CompSci 316 Spring 2020

Relational model: review (again)

• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a name and a domain (or type)
• Each relation contains a set of tuples (or rows)

Example: Users, Groups, Members

Users
- Each has uid (unique id), name, age, pop (popularity)

Groups
- Each has gid (unique id), name

Member
- Records from date (when a user joined a group)

Keys

• A set of attributes K is a key for a relation R if
 • In no instance of R will two different tuples agree on all attributes of K
 • That is, K can serve as a “tuple identifier”
 • No proper subset of K satisfies the above condition
 • That is, K is minimal
• Example: User (uid, name, age, pop)

Schema vs. instance

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>uid</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

• Is name a key of User?
More examples of keys

• *Member* (*uid*, *gid*)

• *Address* (*street_address*, *city*, *state*, *zip*)

Use of keys?

Database design

• Understand the real-world domain being modeled
• Specify it using a database design model
 • More intuitive and convenient for schema design
 • But not necessarily implemented by DBMS
 • We will cover
 • *Entity/Relationship (E/R)* model
• Translate specification to the data model of DBMS
 • Relational, XML, object-oriented, etc.
• Create DBMS schema

Entity-relationship (E/R) model

• Historically and still very popular
• Primarily a design model—not directly implemented by DBMS
• Designs represented by E/R diagrams
 • We use the style of E/R diagram covered by the GMUW book; there are other styles/extensions

E/R basics

• *Entity*: a “thing,” like an object
• *Entity set*: a collection of things of the same type, like a relation of tuples or a class of objects
 • Represented as a rectangle
• *Relationship*: an association among entities
• *Relationship set*: a set of relationships of the same type (among same entity sets)
 • Represented as a diamond
• *Attributes*: properties of entities or relationships, like attributes of tuples or objects
 • Represented as ovals

An example E/R diagram

• Users are members of groups

• A *key* of an entity set is represented by underlining all attributes in the key
 • A key is a set of attributes whose values can belong to at most one entity in an entity set—like a key of a relation
Attributes of relationships

• Example: a user belongs to a group since a particular date

• Where do the dates go?

More on relationships

• There could be multiple relationship sets between the same entity sets
 • Example: Users IsMemberOf Groups; Users Likes Groups

• In a relationship set, each relationship is uniquely identified by the entities it connects
 • Example: Between Bart and “Dead Putting Society”, there can be at most one IsMemberOf relationship and at most one Likes relationship
 • What if Bart joins DPS, leaves, and rejoins? How can we modify the design to capture historical membership information

Multiplicity of relationships

• E and F: entity sets
 • Many-many: Each entity in E is related to 0 or more entities in F and vice versa
 • Example:

 • Many-one: Each entity in E is related to 0 or 1 entity in F, but each entity in F is related to 0 or more in E
 • Example:

 • One-one: Each entity in E is related to 0 or 1 entity in F and vice versa
 • Example:

 • “One” (0 or 1) is represented by an arrow
 • “Exactly one” is represented by a rounded arrow

Roles in relationships

• An entity set may participate more than once in a relationship set
 • May need to label edges to distinguish roles
 • Examples
 • Users may be parents of others; label needed
 • Users may be friends of each other; label not needed

n-ary relationships

• Example: a user must have an initiator in order to join a group

Rule for interpreting an arrow into entity set E in an n-ary relationship:

• Pick one entity from each of the other entity sets; together they can be related to at most one entity in E

• Exercise: hypothetically, what do these arrows imply?
n-ary versus binary relationships

- Can we model n-ary relationships using just binary relationships?

![Diagram showing n-ary relationships between Users, Groups, and an intermediary entity]

Next: two special relationships

... is part of/belong to ...

![Diagram illustrating special relationships]

Weak entity sets

Sometimes, an entity’s identity depends on some others’

- The key of a weak entity set E comes not completely from its own attributes, but from the keys of one or more other entity sets
- E must link to them via many-one or one-one relationship sets
- Example: Rooms inside Buildings are partly identified by Buildings’ name
- A weak entity set is drawn as a double rectangle
- The relationship sets through which it obtains its key are called supporting relationship sets, drawn as double diamonds

![Diagram showing weak entity sets]

Weak entity set examples

- Seats in rooms in building

![Diagram illustrating weak entity set examples]

Remodeling n-ary relationships

- An n-ary relationship set can be replaced by a weak entity set (called a connecting entity set) and n binary relationship sets

![Diagram showing remodeling of n-ary relationships]

ISA relationships

- Similar to the idea of subclasses in object-oriented programming: subclass = special case, fewer entities, and possibly more properties
- Represented as a triangle (direction is important)
- Example: paid users are users, but they also get avatars (yay!)

![Diagram illustrating ISA relationships]
Summary of E/R concepts

- Entity sets
 - Keys
 - Weak entity sets
- Relationship sets
 - Attributes of relationships
 - Multiplicity
 - Roles
 - Binary versus n-ary relationships
 - Modeling n-ary relationships with weak entity sets and binary relationships
 - ISA relationships

Case study 1

- Design a database representing cities, counties, and states
 - For states, record name and capital (city)
 - For counties, record name, area, and location (state)
 - For cities, record name, population, and location (county and state)
- Assume the following:
 - Names of states are unique
 - Names of counties are only unique within a state
 - Names of cities are only unique within a county
 - A city is always located in a single county
 - A county is always located in a single state

Case study 1: first design

Case study 1: second design

Case study 2

- Design a database consistent with the following:
 - A station has a unique name and an address, and is either an express station or a local station
 - A train has a unique number and an engineer, and is either an express train or a local train
 - A local train can stop at any station
 - An express train only stops at express stations
 - A train can stop at a station for any number of times during a day
 - Train schedules are the same everyday

Case study 2: first design
Case study 2: second design