Query Processing
Introduction to Databases
CompSci 316 Spring 2020

Overview
• Many different ways of processing the same query
 • Scan? Sort? Hash? Use an index?
 • All have different performance characteristics and/or make different assumptions about data
• Best choice depends on the situation
 • Implement all alternatives
 • Let the query optimizer choose at run-time

Notation
• Relations: R, S
• Tuples: r, s
• Number of tuples: $|R|, |S|
• Number of disk blocks: $B(R), B(S)$
• Number of memory blocks available: M
• Cost metric
 • Number of I/O’s
 • Memory requirement

Scanning-based algorithms
• Scan table R and process the query
 • Selection over R
 • Projection of R without duplicate elimination
• I/O’s: $B(R)$
 • Trick for selection: stop early if it is a lookup by key
• Memory requirement: 2
• Not counting the cost of writing the result out
 • Same for any algorithm
 • Maybe not needed—results may be pipelined into another operator

Recall our disk-memory diagram
On board!
• How do we implement \textit{Join}?
• Ideas? (discuss with neighbors)
• Cost?
 • (page I/O – in terms of B(R), |R| etc.)
 • Memory requirement?

\textbf{Nested-loop join}

\[R \bowtie_p S \]

• For each block of R, and for each \(r \) in the block:
 For each block of S, and for each \(s \) in the block:
 Output rs if p evaluates to true over r and s
• R is called the outer table; S is called the inner table
• I/Os: $B(R) + |R| \cdot B(S)$
• Memory requirement: \(\leq B(R) \)

\textbf{Block-based Nested Loop Join}

\[R \bowtie_p S \]

• R outer, S inner
• For each block of R, for each block of S:
 For each r in the R block, for each s in the S block: …
 • I/Os: $B(R) + B(R) \cdot B(S)$
 • Memory requirement: same as before

\textbf{More improvements}

• Make use of available memory
 • Stuff memory with as much of R as possible, stream S
 • I/Os: $B(R) + \frac{B(R)}{M} \cdot B(S)$
 • Or, roughly: $B(R) \cdot B(S) / M$
 • Memory requirement: \(\leq M \) (as much as possible)

• Which table would you pick as the outer?

\textbf{Sorting-based algorithms}

\[\text{http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg} \]

\textbf{External merge sort}

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory
• \textbf{Pass 0}: read M blocks of R at a time, sort them, and write out a level-0 run

• \textbf{Pass 1}: merge $(M - 1)$ level-0 runs at a time, and write out a level-1 run

• \textbf{Pass 2}: merge $(M - 1)$ level-1 runs at a time, and write out a level-2 run
…”
• Final pass produces one sorted run
Toy example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
 - 1, 7, 4 → 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 → 3, 6, 9
- Pass 1
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

Analysis

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
 - There are $\frac{(B(R))}{M}$ level-0 sorted runs
- Pass i: merge $(M-1)$ level-$(i-1)$ runs at a time, and write out a level-i run
 - $(M-1)$ memory blocks for input, 1 to buffer output
 - # of level-i runs $= \frac{\text{# of level-$(i-1)$ runs}}{M-1}$
- Final pass produces one sorted run

Performance of external merge sort

- Number of passes: $\log_{M-1} \left(\frac{B(R)}{M} \right) + 1$
- I/O’s
 - Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
 - Subtract $B(R)$ for the final pass
 - Roughly, this is $O(B(R) \times \log_{M} B(R))$
- Memory requirement: M (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Overlap I/O with processing
 - Trade-off: smaller fan-in (more passes)
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 - More sequential I/O’s
 - Trade-off: larger cluster → smaller fan-in (more passes)

Sort-merge join

$R \bowtie_{R.A=S.B} S$

- Sort R and S by their join attributes; then merge r, s = the first tuples in sorted R and S
 - Repeat until one of R and S is exhausted:
 - If $r.A \geq s.B$ then $s = \text{next tuple in } S$
 - If $r.A < s.B$ then $r = \text{next tuple in } R$
 - else output all matching tuples, and $r, s = \text{next in } R$ and S
- I/O’s: $\text{sorting} + 2B(R) + 2B(S)$ (always?)
 - In many cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins

Example of merge join

$R: \quad S: \quad R \bowtie_{R.A=S.B} S:$

<table>
<thead>
<tr>
<th>r_1</th>
<th>$A = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_2</td>
<td>$A = 3$</td>
</tr>
<tr>
<td>r_3</td>
<td>$A = 3$</td>
</tr>
<tr>
<td>r_4</td>
<td>$A = 5$</td>
</tr>
<tr>
<td>r_5</td>
<td>$A = 7$</td>
</tr>
<tr>
<td>r_6</td>
<td>$A = 7$</td>
</tr>
<tr>
<td>r_7</td>
<td>$A = 8$</td>
</tr>
<tr>
<td>s_1</td>
<td>$B = 1$</td>
</tr>
<tr>
<td>s_2</td>
<td>$B = 2$</td>
</tr>
<tr>
<td>s_3</td>
<td>$B = 3$</td>
</tr>
<tr>
<td>s_4</td>
<td>$B = 3$</td>
</tr>
<tr>
<td>s_5</td>
<td>$B = 8$</td>
</tr>
</tbody>
</table>

| r_1s_1 |
| r_2s_3 |
| r_3s_4 |
| r_4s_3 |
| r_5s_4 |
| r_6s_5 |
Optimization of SMJ

- Idea: combine join with the (last) merge phase of merge sort
- Sort: produce sorted runs for R and S such that there are fewer than M of them total
- Merge and join: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!

Performance of SMJ

- If SMJ completes in two passes:
 - I/Os: 3 \cdot (B(R) + B(S)) - why 3?
 - Memory requirement:
 - We must have enough memory to accommodate one block from each run: \(M > \frac{B(R) + B(S)}{M - 1} \)
 - \(M > \sqrt{B(R) + B(S)} \)
- If SMJ cannot complete in two passes:
 - Repeatedly merge to reduce the number of runs as necessary before final merge and join

Other sort-based algorithms

- Union (set), difference, intersection
- More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- Grouping and aggregation
 - External merge sort, by group-by columns
 - Trick: produce "partial" aggregate values in each run, and combine them during merge
 - This trick doesn't always work though
 - Examples: SUM(DISTINCT ...), MEDIAN(...)

Hashing-based algorithms

Hash join

\[R \bowtie_{A=S.B} S \]

- Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If r.A and s.B get hashed to different partitions, they don't join

- Nested-loop join considers all slots
- Hash join considers only those along the diagonal:

Partitioning phase

- Partition R and S according to the same hash function on their join attributes
Probing phase

• Read in each partition of R, stream in the corresponding partition of S, join
 • Typically build a hash table for the partition of R
 • Not the same hash function used for partition, of course!

Performance of (two-pass) hash join

• If hash join completes in two passes:
 • I/O’s: $3 \cdot (B(R) + B(S))$
 • Memory requirement:
 • In the probing phase, we should have enough memory to fit one partition of R:
 \[M - 1 > \frac{B(R)}{R} \]
 • We can always pick R to be the smaller relation, so:
 \[M > \sqrt{B(R)} + 1 \]

Generalizing for larger inputs

• What if a partition is too large for memory?
 • Read it back in and partition it again!
 • See the duality in multi-pass merge sort here?

Hash join versus SMJ

(Assuming two-pass)

• I/O’s: same
 • Memory requirement: hash join is lower
 \[\min(B(R), B(S)) + 1 < \sqrt{B(R)} + B(S) \]
 • Hash join wins when two relations have very different sizes
• Other factors
 • Hash join performance depends on the quality of the hash
 • Might not get evenly sized buckets
 • SMJ can be adapted for inequality join predicates
 • SMJ wins if R and/or S are already sorted
 • SMJ wins if the result needs to be in sorted order

What about nested-loop join?

• May be best if many tuples join
 • Example: non-equality joins that are not very selective

• Necessary for black-box predicates
 • Example: WHERE user_defined_pred($R.A, S.B$)

Other hash-based algorithms

• Union (set), difference, intersection
 • More or less like hash join
• Duplicate elimination
 • Check for duplicates within each partition/bucket
• Grouping and aggregation
 • Apply the hash functions to the group-by columns
 • Tuples in the same group must end up in the same partition/bucket
 • Keep a running aggregate value for each group
 • May not always work
Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- Handling very large inputs
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)

Selection using index

- Equality predicate: $\sigma_{A=v}(R)$
 - Use an ISAM, B+-tree, or hash index on $R(A)$
- Range predicate: $\sigma_{A>v}(R)$
 - Use an ordered index (e.g., ISAM or B+-tree) on $R(A)$
 - Hash index is not applicable
- Indexes other than those on $R(A)$ may be useful
 - Example: B+-tree index on $R(A, B)$
 - How about B+-tree index on $R(B, A)$?

Index versus table scan

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A(\sigma_{A>v}(R))$
- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

- Consider $\sigma_{A=v}(R)$ and a secondary, non-clustered index on $R(A)$
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies $A > v$
 - Could happen even for equality predicates
 - I/O’s for index-based selection: lookup + 20% |R|
 - I/O’s for scan-based selection: $B(R)$
 - Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

$R \bowtie_{R.A=S.B} S$

- Idea: use a value of $R.A$ to probe the index on $S(B)$
- For each block of R, and for each r in the block:
 - Use the index on $S(B)$ to retrieve s with $s.B = r.A$
 - Output rs
- I/O’s: $B(R) + |R| \cdot (\text{index lookup})$
 - Typically, the cost of an index lookup is 2-4 I/O’s
 - Beats other join methods if |R| is not too big
 - Better pick R to be the smaller relation
- Memory requirement: 3
Zig-zag join using ordered indexes

\(R \bowtie_{R.A=S.B} S \)

- Idea: use the ordering provided by the indexes on \(R(A) \) and \(S(B) \) to eliminate the sorting step of sort-merge join
- Use the larger key to probe the other index
 - Possibly skipping many keys that don't match

Summary of techniques

- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- Sort
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Hash
 - Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Index
 - Selection, index nested-loop join, zig-zag join