1 Shortest Path

1.1 s-t Shortest Path

Using the following graph as an example. Given that s is the starting node and t is the target node. Find the s-t shortest path.

The possible paths from s to t are:

1. $s \xrightarrow{5} a \xrightarrow{10} t$. The total cost is 15.
2. $s \xrightarrow{5} a \xrightarrow{1} b \xrightarrow{5} t$. The total cost is 11.
3. $s \xrightarrow{5} a \xrightarrow{1} b \xrightarrow{1} c \xrightarrow{3} t$. The total cost is 10.

1.2 Single Source Shortest Path

Problem Statement: Find the shortest path from a single source s to every other vertex in the graph.
State: Let $d[v]$ be the length of shortest path from s to v.

Transition Function

$$d[v] = \min_{(u,v) \in E}(w(u,v) + d[u])$$

In which $w(u,v)$ is the length of last edge and $d[u]$ is the distance from s to u.

Take the graph above as an example.

$$d[t] = \min \begin{cases}
 d[a] + 10, & 15 \\
 d[b] + 15, & 11 \\
 d[c] + 3, & 10
\end{cases}$$

1.3 Dijkstra’s Algorithm

Maintain a set of visited vertices (the vertices that we have computed shortest path for) V. The set is initialized as s, which contains only the source node. We also need to maintain a distance array.

1. For vertices that are visited. ($u \in V$).

 $$\text{dis}[u] = d[u] = \text{Length of shortest path from } s \text{ to } u.$$

2. For vertices not visited ($u \not\in V$)

 $$\text{dis}[u] = d[u] = \text{Length of the shortest path from } s \text{ to } u, \text{ only use vertices in } V \text{ as intermediate vertices.}$$

At every iteration, select $u \not\in V$ such that dis[u] is smallest. Add u to V, update the dis array.

Proof of Correctness

The main step here is to prove the claim that for vertex v with smallest dis[v] among the vertices not in set V, $d[v] = \text{dis}[v]$.

Assume towards contradiction that there is a path from s to v with length shorter than dis[v]. By the inductive hypothesis, the shorter path must use vertices that are not visited as intermediate vertices. Let v' be the first vertex on the path such that $v' \not\in V$. By induction hypothesis, we know distance from s to v' is at least dis[v'], but dis[v]dis[v'] by choice of the algorithm, so length of this path cannot be smaller than dis[v].