- Reductions

- A can be reduced to B, if given a solution to B, can use that to solve problem A.

```plaintext
B (input to prob. B)
|
|
|
return correct answer given to you
```

```plaintext
A (input to problem A)
|
|
|
do anything on input
|
call B( ... )
|
do something with output
|
call B(1, 2)
|
return correct answer to A
```

- Example: LIS to LCS

\[X = \{ 5, 2, 3, 6, 4, 9 \} \]

\[\text{LIS} = 4, \{2, 3, 6, 9\} \]

- Reduction

\[\text{LIS}(X[1]) \]

| \{ \}
| \{ \}
| \{ \}

\[Y = \{ 2, 3, 4, 5, 6, 9 \} \]

\[\text{LCS}(\{5, 2, 3, 6, 4, 9\}, \{2, 3, 4, 5, 6, 9\}) = 4, \{2, 3, 6, 9\} \]

\[\text{(best) runtime for LIS} \leq \text{(best) runtime for LCS + } O(n^2) \]

- A can be reduced to B, reduction time "small" if A is easier than B "easier" "no harder than"
runtime $A \leq 0$ (runtime for B)

- complexity class, easy vs. hard problems
 - P: set of decision problems that can be solved in polynomial time.
 - NP: set of decision problems whose solution can be verified in polynomial time.

 Accept if solution is correct.

 \[
 \begin{array}{c}
 \text{ verifier } \\
 \text{ polynomial time }
 \end{array}
 \quad \Rightarrow \quad \begin{array}{c}
 \text{ solution } \\
 \text{ output of NP problem }
 \end{array}
 \]

 YES if \exists solution s.t. verifier(input, solution) accepts
 NO if for any solution verifier(input, solution) rejects.

- $P \subseteq \text{NP}$, believe $P \neq \text{NP}$

- Polynomial time reduction: convert input X of A to input Y of B in poly time, return $B(Y)$.