Section: Finite Automata

Deterministic Finite Accepter (or Automata)

A DFA = \((Q, \Sigma, \delta, q_0, F)\)

Where

- \(Q\) is finite set of states
- \(\Sigma\) is tape (input) alphabet
- \(q_0\) is initial state
- \(F \subseteq Q\) is set of final states
- \(\delta: Q \times \Sigma \rightarrow Q\)
Example: DFA that accepts even binary numbers.

Transition Diagram:

\[
M = (Q, \Sigma, \delta, q_0, F) =
\]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td>q0</td>
</tr>
<tr>
<td>q1</td>
<td>q1</td>
<td>q0</td>
</tr>
</tbody>
</table>

Example of a move: \(\delta(q_0, 1) = q_0 \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q, s)
 s = next symbol to the right on tape
if q ∈ F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1) \[\begin{array}{c}
q_0 \\
q_1
\end{array} \]

2) \[\begin{array}{c}
q_0 \\
q_1
\end{array} \]

3) \[\begin{array}{c}
q_0 \\
q_1
\end{array} \]

4) \[\begin{array}{c}
q_0 \\
q_1
\end{array} \]
Definition:

\[\delta^*(q, \lambda) = q \]
\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition: The language accepted by a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally,

\[L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \} \]
Trap State

Example: \(L(M) = \{ anb | n \geq 0 \} \)
Example:

$L = \{w \in \Sigma^* \mid w \text{ has an even number of a’s and an even number of b’s}\}$
Example: DFA that accepts even binary numbers that have an even number of 1’s.
Definition A language is regular iff there exists DFA M s.t. $L = L(M)$.
Chapter 2.2

Nondeterministic Finite Automata (or Acceptor)

Definition

An NFA = (Q, Σ, δ, q₀, F)

where

Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.
δ: Q × (Σ ∪ {λ}) → 2^Q
Example

Note: In this example \(\delta(q_0, a) = \{ q_1, q_2 \} \)

\[L = \{ aab, bab, aba, b, za, zb \} \]
Example

$L = \{(ab)^n \mid n > 0\} \cup \{a^nb \mid n > 0\}$
Definition $q_j \in \delta^*(q_i, w)$ if and only if there is a walk from q_i to q_j labeled w.

Example From previous example:

\[
\delta^*(q_0, ab) = \{q_1, q_5, q_0\}
\]

\[
\delta^*(q_0, aba) = \{q_3\}
\]

Definition: For an NFA M,

$L(M) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset\}$
2.3 NFA vs. DFA: Which is more powerful?

Example:
Theorem Given an NFA
\(M_N = (Q_N, \Sigma, \delta_N, q_0, F_N) \), then there exists a DFA \(M_D = (Q_D, \Sigma, \delta_D, q_0, F_D) \) such that \(L(M_N) = L(M_D) \).

Proof:

We need to define \(M_D \) based on \(M_N \).

\(Q_D = \)

\(F_D = \)

\(\delta_D : \)
Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge
 (a) Choose a state $A = \{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$
 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 (c) Add state B if it doesn’t exist
 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Example:
Properties and Proving - Problem 1

Consider the property
Replace_one_a_with_b or R1awb for short. If L is a regular, prove
R1awb(L) is regular.

The property R1awb applied to a
language L replaces one a in each
string with a b. If a string does not
have an a, then the string is not in
R1awb(L).

Example 1: Consider L={aaab, bbaa}
R1awb(L)=

Example 2: Consider \(\Sigma = \{a, b\} \), L =
{\(w \in \Sigma^* \mid w \) has an even number of a’s
and an even number of b’s}
R1awb(L)=

Proof:
Consider the property
Truncate_all_preceeding_b’s or
TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).

Example 1: Consider $L = \{aaab, bbaa\}$

$TruncPreb(L) =$

Example 2: Consider $L = \{(bba)^n \mid n > 0\}$

$TruncPreb(L) =$

Proof:
Minimizing Number of states in DFA

Why?

Algorithm

• Identify states that are indistinguishable
 These states form a new state

Definition Two states \(p \) and \(q \) are indistinguishable if for all \(w \in \Sigma^* \)

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
\]

Definition Two states \(p \) and \(q \) are distinguishable if \(\exists w \in \Sigma^* \) s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR } \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example: