Section: Properties of Regular Languages

Example

\[L = \{ a^n b a^n \mid n > 0 \} \]

Closure Properties

A set is closed over an operation if

\[L_1, L_2 \in \text{class} \]
\[L_1 \text{ op } L_2 = L_3 \]
\[\Rightarrow L_3 \in \text{class} \]
$L = \{ x \mid x \text{ is a positive even integer} \}$

L is closed under

- addition? **yes**
- multiplication? **yes**
- subtraction? **no**
- division? **no**

Closure of Regular Languages

Theorem 4.1 If L_1 and L_2 are regular languages, then

\[
L_1 \cup L_2 \\
L_1 \cap L_2 \\
L_1 L_2 \\
\overline{L}_1 \\
L_1^*
\]

are regular languages.
Proof(sketck)

L_1 and L_2 are regular languages
$\Rightarrow \exists$ reg. expr. r_1 and r_2 s.t.
$L_1 = L(r_1)$ and $L_2 = L(r_2)$
$r_1 + r_2$ is r.e. denoting $L_1 \cup L_2$
\Rightarrow closed under union
$r_1 r_2$ is r.e. denoting $L_1 L_2$
\Rightarrow closed under concatenation
r_1^* is r.e. denoting L_1^*
\Rightarrow closed under star-closure
complementation:

L_1 is reg. lang.

$\Rightarrow \exists$ DFA M s.t. $L_1 = L(M)$

Construct M' s.t.

Final states in M

care nonfinal states in M'

Nonfinal states in M

are final states in M'

Show $w \in L(M)$ $\Rightarrow w \in \overline{L(M)}$.

\exists closed under complementation.
intersection:

L_1 and L_2 are reg. lang.

$\Rightarrow \exists$ DFA M_1 and M_2 s.t.

$L_1 = L(M_1)$ and $L_2 = L(M_2)$

$M_1 =$ $(Q, \Sigma, \delta_1, q_0, F_1)$

$M_2 =$ $(P, \Sigma, \delta_2, p_0, F_2)$

Construct $M' =$ $(Q', \Sigma, \delta', (q_0, p_0), F')$

$Q' = \Theta \times \Phi$

$\delta':$

$\delta'((q_i, p_j), a) = (q_k, p_e)$ if

$\delta_1((q_i, a) = q_k) \in M_1$ and

$\delta_2((p_j, a) = p_e) \in M_2$

$F' = \{(q_i, p_j), (q_i, p_j) : q_i \in F_1 \text{ and } p_j \in F_2\}$
Example:

```
Example:

1 -> a -> 2

A -> a -> B -> a

a, b

trapstate
```
Regular languages are closed under

reversal \(L^R \)
difference \(L_1-L_2 \)
right quotient \(L_1/L_2 \)
homomorphism \(h(L) \)
Right quotient

Def: $L_1/L_2 = \{ x | xy \in L_1 \text{ for some } y \in L_2 \}$

Example:

$L_1 = \{ a^*b^* \cup b^*a^* \}$
$L_2 = \{ b^n | n \text{ is even, } n > 0 \}$
$L_1/L_2 = \{ x^*y^3 | x^*y^3 \text{ is odd} \}$
Theorem If L_1 and L_2 are regular, then L_1/L_2 is regular.

Proof (sketch)

\exists DFA $M = (Q, \Sigma, \delta, q_0, F)$ s.t. $L_1 = L(M)$.

Construct DFA $M' = (Q, \Sigma, \delta, q_0, F')$

For each state i do

Make i the start state (representing L'_i)

If $L_i \cap L_2 \neq \emptyset$

put q_i in F' in M'

QED.
Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

$$h: \Sigma \rightarrow \Gamma^*$$

Example:

$$\Sigma = \{a, b, c\}, \Gamma = \{0, 1\}$$

- $h(a) = 11$
- $h(b) = 00$
- $h(c) = 0$

$$h(bc) = 000$$

$$h(ab^*) = 1(00)^*$$
Questions about regular languages:

L is a regular language.

- Given L, \(\Sigma \), \(w \in \Sigma^* \), is \(w \in L \)?

 - Construct DFA test to see if it accepts \(w \)

- Is \(L \) empty?

 - DFS

- Is \(L \) infinite?

 - Check for cycle on path from start state to final state

- Does \(L_1 = L_2 \)?

 \[(L_1 \cup L_2) \cup (L_1 \cap L_2) = \emptyset \]

 equivalent
Identifying Nonregular Languages

If a language L is finite, is L regular? \(\text{yes} \)

If L is infinite, is L regular? \(\text{maybe} \)

- $L_1 = \{a^n b^m | n > 0, m > 0\} = \text{aa*bb*}$
- $L_2 = \{a^n b^n | n > 0\} \text{ not}$
Prove that \(L_2 = \{ a^n b^n \mid n > 0 \} \) is not regular.

- Proof: Suppose \(L_2 \) is regular.
 \[\Rightarrow \exists \text{ DFA } M \text{ that recognizes } L_2 \]

Consider a long string \(a^K b^K \in L_2 \) with \(K \) states, there must be a loop in the \(a's \).
Some loop in the a's
say $+a$'s in the loop
\Rightarrow

$ak+kb$ is accepted
$\Rightarrow a$ is also accepted
$ak+kb \notin L$!
Contradiction. DFA doesn't exist.
Pumping Lemma: Let L be an infinite regular language. \exists a constant $m > 0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w = xyz$ with

- $|xy| \leq m$
- $|y| \geq 1$
- $xy^iz \in L$ for all $i \geq 0$
To Use the Pumping Lemma to prove L is not regular:

- Proof by Contradiction.
 Assume L is regular.
 ⇒ L satisfies the pumping lemma.
 Choose a long string w in L,
 $|w| \geq m$.
 Show that there is NO division of w into xyz (must consider all possible divisions) such that $|xy| \leq m$, $|y| \geq 1$ and $xy^iz \in L \ \forall \ i \geq 0$.
 The pumping lemma does not hold. Contradiction!
 ⇒ L is not regular. QED.
Example \(L = \{ a^n c b^n \mid n > 0 \} \)

\(L \) is not regular.

- **Proof:**
 Assume \(L \) is regular.
 \(\Rightarrow \) the pumping lemma holds.

Choose \(w = \)
Example $L = \{a^n b^{n+s} c^s | n, s > 0\}$

L is not regular.

- **Proof:**

 Assume L is regular.

 \Rightarrow the pumping lemma holds.

 Choose $w =$

 So the partition is:
Example $\Sigma = \{a, b\}$,
$L = \{ w \in \Sigma^* \mid n_a(w) > n_b(w) \}$

L is not regular.

• Proof:
 Assume L is regular.
 \Rightarrow the pumping lemma holds.
 Choose $w =$
 So the partition is:
Example $L = \{a^3b^n c^{n-3} | n > 3\}$
(shown in detail on handout)
L is not regular.
To Use Closure Properties to prove L is not regular:

- **Proof Outline:**
 - Assume L is regular.
 - Apply closure properties to L and other regular languages, constructing L' that you know is not regular.
 - closure properties $\Rightarrow L'$ is regular.
 - Contradiction!
 - L is not regular. QED.
Example $L = \{a^3b^n c^{n-3} | n > 3\}$

L is not regular.

- Proof: (proof by contradiction)

 Assume L is regular.

 Define a homomorphism $h : \Sigma \to \Sigma^*$

 $h(a) = a \quad h(b) = a \quad h(c) = b$

 $h(L) =$
Example $L = \{a^n b^m a^m | m \geq 0, n \geq 0\}$

L is not regular.

- **Proof:** (proof by contradiction)
 Assume L is regular.
Example: \(L_1 = \{ a^n b^n a^n | n > 0 \} \)

\(L_1 \) is not regular.