Section: Other Models of Turing Machines

Definition: Two automata are equivalent if they accept the same language.

Turing Machines with Stay Option

Modify δ, $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$

Theorem Class of standard TM’s is equivalent to class of TM’s with stay option.

Proof:

• (\Rightarrow): Given a standard TM M, then there exists a TM M’ with stay option such that $L(M) = L(M’)$.

 easy
• (⇐): Given a TM M with stay option, construct a standard TM M’ such that \(L(M) = L(M’) \).

\[M = (Q, \Sigma, \Gamma, \delta, q_0, B, F) \]

\[M’ = (Q’, \Sigma, \Gamma, \delta’, q_0’, B, F’) \]

For each transition in M with a move (L or R) put the transition in M’. So, for

\[\delta(q_i, a) = (q_j, b, L \text{ or } R) \]

put into \(\delta’ \)

For each transition in M with S (stay-option), move right and move left. So for

\[\delta(q_i, a) = (q_j, b, S) \]

\[\delta’(q_{i5}', a) = (q_{j5}', b, R) \]

\[\delta’(q_{i5}', a) = (q_{j5}', b, L) \quad \forall c \in \Sigma \]

\(L(M) = L(M’) \). QED.
Definition: A multiple track TM divides each cell of the tape into \(k \) cells, for some constant \(k \).

A 3-track TM:

\[
\begin{array}{cccc}
 & b & c & a & b \\
1 & 1 & 1 & 1 \\
& a & & \\
\end{array}
\]

A multiple track TM starts with the input on the first track, all other tracks are blank.

\[\delta: Q \times (\Gamma \times \Gamma \times \Gamma) \rightarrow Q \times (\Gamma \times L \times \Gamma) \times L \cup R\]
Theorem Class of standard TM’s is equivalent to class of TM’s with multiple tracks.

Proof: (sketch)

• (\Rightarrow): Given standard TM M there exists a TM M’ with multiple tracks such that $L(M)=L(M')$.

 just use one track.

• (\Leftarrow): Given a TM M with multiple tracks there exists a standard TM M’ such that $L(M)=L(M')$.
Definition: A TM with a semi-infinite tape is a standard TM with a left boundary.

Theorem Class of standard TM’s is equivalent to class of TM’s with semi-infinite tapes.

Proof: (sketch)

• \((\Rightarrow)\): Given standard TM \(M\) there exists a TM \(M'\) with semi-infinite tape such that \(L(M)=L(M')\). Given \(M\), construct a 2-track semi-infinite TM \(M'\)
Given a TM M with semi-infinite tape there exists a standard TM M' such that $L(M) = L(M')$.

\[\text{easy}\]
Definition: An Multitape Turing Machine is a standard TM with multiple (a finite number) read/write tapes.

For an n-tape TM, define δ:
Theorem Class of Multitape TM’s is equivalent to class of standard TM’s.

Proof: (sketch)

• (⇐): Given standard TM M, construct a multitape TM M’ such that L(M)=L(M’).

• (⇒): Given n-tape TM M construct a standard TM M’ such that L(M)=L(M’).

3-tape \rightarrow 6-track TM

<table>
<thead>
<tr>
<th>#</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\uparrow
Definition: An Off-Line Turing Machine is a standard TM with 2 tapes: a read-only input tape and a read/write output tape.

Define δ:

![Diagram of a Turing Machine]

$\delta : Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \times \{\lambda\}$
Theorem: Class of standard TM’s is equivalent to class of Off-line TM’s.

Proof: (sketch)

• (\Rightarrow): Given standard TM M there exists an off-line TM M' such that $L(M)=L(M').$

 Copy input to 2nd tape
 Run program on 2nd tape

• (\Leftarrow): Given an off-line TM M there exists a standard TM M' such that $L(M)=L(M').$

 4-track TM

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

↑
Running Time of Turing Machines

Example:

Given $L = \{a^n b^n c^n | n > 0\}$. Given $w \in \Sigma^*$, is w in L?

Write a 3-tape TM for this problem.
Definition: An Multidimensional-tape Turing Machine is a standard TM with a multidimensional tape

\[
\begin{array}{cccc}
\uparrow \\
& & & \\
& & & \\
& & & \\
& & & \\
\downarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
\uparrow & & & \\
& & & \leftarrow \\
& a & b & c \\
& & & \rightarrow \\
& & & \\
\downarrow & & & \\
\end{array}
\]

Define \(\delta \):
Theorem Class of standard TM’s is equivalent to class of 2-dimensional-tape TM’s.

Proof: (sketch)

• \((\Rightarrow)\): Given standard TM M, construct a 2-dim-tape TM M’ such that \(L(M) = L(M')\).

• \((\Leftarrow)\): Given 2-dim tape TM M, construct a standard TM M’ such that \(L(M) = L(M')\).
Construct M'

<table>
<thead>
<tr>
<th></th>
<th># a</th>
<th># b</th>
<th># c</th>
</tr>
</thead>
<tbody>
<tr>
<td># 1</td>
<td># 1</td>
<td># 1</td>
<td># 1</td>
</tr>
</tbody>
</table>
Definition: A *nondeterministic* Turing machine is a standard TM in which the range of the transition function is a set of possible transitions.

Define δ:

Theorem Class of deterministic TM’s is equivalent to class of nondeterministic TM’s.

Proof: (sketch)

- (\Rightarrow): Given deterministic TM M, construct a nondeterministic TM M' such that $L(M) = L(M')$.

- (\Leftarrow): Given nondeterministic TM M, construct a deterministic TM M' such that $L(M) = L(M')$. Construct M' to be a 2-dim tape TM.
A step consists of making one move for each of the current machines. For example: Consider the following transition:

\[\delta(q_0, a) = \{(q_1, b, R), (q_2, a, L), (q_1, c, R)\} \]

Being in state \(q_0 \) with input abc.
The one move has three choices, so 2 additional machines are started.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td>q1</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>q2</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>q1</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>
Definition: A 2-stack NPDA is an NPDA with 2 stacks.

Define δ:
Consider the following languages which could not be accepted by an NPDA.

1. \(L = \{ a^n b^n c^n | n > 0 \} \)
2. \(L = \{ a^n b^n a^n b^n | n > 0 \} \)
3. \(L = \{ w \in \Sigma^* | \text{number of } a\text{'s equals number of } b\text{'s equals number of } c\text{'s} \}, \)
\(\Sigma = \{ a, b, c \} \)
Theorem Class of 2-stack NPDA’s is equivalent to class of standard TM’s.

Proof: (sketch)

• (⇒): Given 2-stack NPDA, construct a 3-tape TM M’ such that L(M) = L(M’).
• (\Leftarrow): Given standard TM M, construct a 2-stack NPDA M' such that $L(M) = L(M')$.
Universal TM - a programmable TM

• **Input:**
 – an encoded TM M
 – input string w

• **Output:**
 – Simulate M on w
An encoding of a TM

Let TM M=\{Q, \Sigma, \Gamma, \delta, q_1, B, F\}

- Q=\{q_1, q_2, \ldots, q_n\}
 Designate \(q_1\) as the start state.
 Designate \(q_2\) as the only final state.
 \(q_n\) will be encoded as n 1’s

- Moves
 L will be encoded by 1
 R will be encoded by 11

- \(\Gamma = \{a_1, a_2, \ldots, a_m\}\)
 where \(a_1\) will always represent the B.
For example, consider the simple TM:

\[
\delta(q_1, a) = (q_1, a, R), \quad \delta(q_1, b) = (q_2, a, L)
\]

which can be represented as 5-tuples:

\[
(q_1, a, q_1, a, R), (q_1, b, q_2, a, L)
\]

Thus, the encoding of the TM is:

0101101011011010111011011010
For example, the encoding of the TM above with input string “aba” would be encoded as:

010110101101101101101001101110110110110110101

Question: Given $w \in \{0, 1\}^+$, is w the encoding of a TM?
Universal TM

The Universal TM (denoted M_U) is a 3-tape TM:
Program for \(M_U \)

1. Start with all input (encoding of TM and string \(w \)) on tape 1. Verify that it contains the encoding of a TM.

2. Move input \(w \) to tape 2

3. Initialize tape 3 to 1 (the initial state)

4. Repeat (simulate TM \(M \))

 (a) consult tape 2 and 3, (suppose current symbol on tape 2 is \(a \) and state on tape 3 is \(p \))

 (b) lookup the move (transition) on tape 1, (suppose \(\delta(p,a)=(q,b,R) \).)

 (c) apply the move
 - write on tape 2 (write b)
 - move on tape 2 (move right)
 - write new state on tape 3 (write q)
Observation: Every TM can be encoded as string of 0’s and 1’s.

Enumeration procedure - process to list all elements of a set in ordered fashion.

Definition: An infinite set is *countable* if its elements have 1-1 correspondence with the positive integers.

Examples:

- \(S = \{ \text{positive odd integers} \} \)
- \(S = \{ \text{real numbers} \} \)
- \(S = \{ w \in \Sigma^+ \}, \Sigma = \{a, b\} \)
- \(S = \{ \text{TM’s} \} \)
- \(S = \{ (i,j) \mid i,j>0, \text{ are integers} \} \)
Linear Bounded Automata

We place restrictions on the amount of tape we can use,

\[
\begin{array}{c|c|c|c}
\text{a} & \text{b} & \text{c} \\
\hline
\end{array}
\]

↑

Definition: A linear bounded automaton (LBA) is a nondeterministic TM \(M=(Q, \Sigma, \Gamma, \delta, q_0, B, F)\) such that \([,] \in \Sigma\) and the tape head cannot move out of the confines of

\([,]\)'s. Thus,

\(\delta(q_i, []) = (q_j, [, R), \text{ and } \delta(q_i,])) = (q_j, [, L)\)

Definition: Let M be a LBA.
\(L(M)=\{w \in (\Sigma - \{[,]\})^*| q_0[w] \vdash [x_1 q_f x_2]\}\)

Example: \(L=\{a^n b^n c^n | n > 0\} \text{ is accepted by some LBA}\)