Parsing

Parsing: Deciding if \(x \in \Sigma^* \) is in \(L(G) \) for some CFG \(G \).

Review

Consider the CFG \(G \):

\[
\begin{align*}
S & \rightarrow Aa \\
A & \rightarrow AA | ABa | \lambda \\
B & \rightarrow BBa | b | \lambda
\end{align*}
\]

Is \(ba \) in \(L(G) \)? Running time?

Remove \(\lambda \)-rules, then unit productions, and then useless productions from the grammar \(G \) above. New grammar \(G' \) is:

\[
\begin{align*}
S & \rightarrow Aa | a \\
A & \rightarrow AA | ABa | Aa | Ba | a \\
B & \rightarrow BBa | Ba | a | b
\end{align*}
\]

Is \(ba \) in \(L(G') \)? Running time?

Top-down Parser:

- Start with \(S \) and try to derive the string.

\[
S \rightarrow aS | b
\]

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

• Start with string, work backwards, and try to derive S.

• Examples: Shift-reduce, Operator-Precedence, LR Parser

We will use the following functions FIRST and FOLLOW to aid in computing parse tables.

The function FIRST:

Some notation that we will use in defining FIRST and FOLLOW.

\[G = (V,T,S,P) \]
\[w,v \in (V \cup T)^* \]
\[a \in T \]
\[X,A,B \in V \]
\[X_I \in (V \cup T)^+ \]

Definition: FIRST(w) = the set of terminals that begin strings derived from w.

If \(w \xrightarrow{*} av \) then
\[a \text{ is in FIRST}(w) \]
If \(w \xrightarrow{*} \lambda \) then
\[\lambda \text{ is in FIRST}(w) \]

To compute FIRST:

1. FIRST(a) = \{a\}
2. FIRST(X)
 1. If \(X \rightarrow aw \) then
 \[a \text{ is in FIRST}(X) \]
 2. If \(X \rightarrow \lambda \) then
 \[\lambda \text{ is in FIRST}(X) \]
 3. If \(X \rightarrow Aw \) and \(\lambda \in \text{FIRST}(A) \) then
 Everything in FIRST(w) is in FIRST(X)
3. In general, FIRST(X_1X_2X_3..X_K) =
 • FIRST(X_1)
 • \(\cup \) FIRST(X_2) if \(\lambda \) is in FIRST(X_1)
 • \(\cup \) FIRST(X_3) if \(\lambda \) is in FIRST(X_1)
 and \(\lambda \) is in FIRST(X_2)
 ...
 • \(\cup \) FIRST(X_K) if \(\lambda \) is in FIRST(X_1)
 and \(\lambda \) is in FIRST(X_2)
 ... and \(\lambda \) is in FIRST(X_{K-1})
 • \{\lambda\} if \(\lambda \notin \text{FIRST}(X_J) \) for all J
Example: \(L = \{a^n b^m c^n : n \geq 0, 0 \leq m \leq 1\} \)

\[
S \rightarrow aSc \mid B \\
B \rightarrow b \mid \lambda
\]

FIRST(B) =
FIRST(S) =
FIRST(Sc) =

Example

\[
S \rightarrow BCD \mid aD \\
A \rightarrow CEB \mid aA \\
B \rightarrow b \mid \lambda \\
C \rightarrow dB \mid \lambda \\
D \rightarrow cA \mid \lambda \\
E \rightarrow e \mid fE
\]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =

Definition: FOLLOW(X) = set of terminals that can appear to the right of X in some derivation.

If \(S \Rightarrow wAav \) then
\(a \) is in FOLLOW(A)

(where \(w \) and \(v \) are strings of terminals and variables, \(a \) is a terminal, and \(A \) is a variable)
To compute FOLLOW:

1. S is in FOLLOW(S)
2. If $A \rightarrow wBv$ and $v \neq \lambda$ then
 \[\text{FIRST}(v) - \{\lambda\} \text{ is in FOLLOW(B)} \]
3. IF $A \rightarrow wB$ OR
 \[A \rightarrow wBv \text{ and } \lambda \text{ is in FIRST}(v) \text{ then} \]
 \[\text{FOLLOW}(A) \text{ is in FOLLOW}(B) \]
4. λ is never in FOLLOW

Example:

\[
S \rightarrow aSc \mid B \\
B \rightarrow b \mid \lambda
\]

FOLLOW(S) =
FOLLOW(B) =

Example:

\[
S \rightarrow BCD \mid aD \\
A \rightarrow CEB \mid aA \\
B \rightarrow b \mid \lambda \\
C \rightarrow dB \mid \lambda \\
D \rightarrow cA \mid \lambda \\
E \rightarrow e \mid fE
\]

FOLLOW(S) =
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
FOLLOW(D) =
FOLLOW(E) =