Section: Parsing

Parsing: Deciding if \(x \in \Sigma^* \) is in \(L(G) \) for some CFG \(G \).

Consider the CFG \(G \):

\[
S \rightarrow Aa \\
A \rightarrow AA \mid ABa \mid \lambda \\
B \rightarrow BBa \mid b \mid \lambda
\]

Is \(ba \) in \(L(G) \)? Running time?

New grammar \(G' \) is:

\[
S \rightarrow Aa \mid a \\
A \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B \rightarrow BBa \mid Ba \mid a \mid b
\]

Is \(ba \) in \(L(G) \)? Running time?
Top-down Parser:

- Start with S and try to derive the string.

\[S \rightarrow aS \mid b \]

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

- Examples: Shift-reduce, Operator-Precedence, LR Parser
The function FIRST:

\[G = (V, T, S, P) \]
\[w, v \in (V \cup T)^* \]
\[a \in T \]
\[X, A, B \in V \]
\[X_I \in (V \cup T)^+ \]

Definition: \(\text{FIRST}(w) = \) the set of terminals that begin strings derived from \(w \).

If \(w \xrightarrow{*} av \) then
\[a \text{ is in } \text{FIRST}(w) \]

If \(w \xrightarrow{*} \lambda \) then
\[\lambda \text{ is in } \text{FIRST}(w) \]
To compute FIRST:

1. FIRST(a) = \{a\}

2. FIRST(X)

 (a) If X \rightarrow aw then
 a is in FIRST(X)

 (b) IF X \rightarrow \lambda then
 \lambda is in FIRST(X)

 (c) If X \rightarrow Aw and \lambda \in FIRST(A)
 then
 Everything in FIRST(w) is in FIRST(X)
3. In general, \(\text{FIRST}(X_1X_2X_3..X_K) = \)

- \(\text{FIRST}(X_1) \)
- \(\cup \text{FIRST}(X_2) \) if \(\lambda \) is in \(\text{FIRST}(X_1) \)
- \(\cup \text{FIRST}(X_3) \) if \(\lambda \) is in \(\text{FIRST}(X_1) \)
 and \(\lambda \) is in \(\text{FIRST}(X_2) \)

 ...

- \(\cup \text{FIRST}(X_K) \) if \(\lambda \) is in \(\text{FIRST}(X_1) \)
 and \(\lambda \) is in \(\text{FIRST}(X_2) \)

 ... and \(\lambda \) is in \(\text{FIRST}(X_{K-1}) \)
- \(\{-\lambda\} \) if \(\lambda \notin \text{FIRST}(X_J) \) for all \(J \)
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

\[\text{FIRST}(B) = \]
\[\text{FIRST}(S) = \]
\[\text{FIRST}(Sc) = \]
Example

\[
\begin{align*}
S & \rightarrow BCD \mid aD \\
A & \rightarrow CEB \mid aA \\
B & \rightarrow b \mid \lambda \\
C & \rightarrow dB \mid \lambda \\
D & \rightarrow cA \mid \lambda \\
E & \rightarrow e \mid fE
\end{align*}
\]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =
Definition: FOLLOW(X) = set of terminals that can appear to the right of X in some derivation.

If $S \Rightarrow^* wAav$ then
 a is in FOLLOW(A)

To compute FOLLOW:
1. \$ is in FOLLOW(S)
2. If \(A \rightarrow wBv \) and \(v \neq \lambda \) then
 FIRST(v) - \(\{\lambda\} \) is in FOLLOW(B)
3. IF \(A \rightarrow wB \) OR
 A \(\rightarrow wBv \) and \(\lambda \) is in FIRST(v)
 then
 FOLLOW(A) is in FOLLOW(B)
4. \(\lambda \) is never in FOLLOW
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

FOLLOW(S) =

FOLLOW(B) =
Example:

\[
\begin{align*}
S & \rightarrow \text{BCD} \mid \text{aD} \\
A & \rightarrow \text{CEB} \mid \text{aA} \\
B & \rightarrow b \mid \lambda \\
C & \rightarrow dB \mid \lambda \\
D & \rightarrow cA \mid \lambda \\
E & \rightarrow e \mid fE
\end{align*}
\]

\[
\begin{align*}
\text{FOLLOW}(S) = \\
\text{FOLLOW}(A) = \\
\text{FOLLOW}(B) = \\
\text{FOLLOW}(C) = \\
\text{FOLLOW}(D) = \\
\text{FOLLOW}(E) =
\end{align*}
\]