Section: Finite Automata

Deterministic Finite Accepter (or Automata)

A DFA = ($Q, \Sigma, \delta, q_0, F$)

where

Q is finite set of states
Σ is tape (input) alphabet
q_0 is initial state
$F \subseteq Q$ is set of final states.
$\delta: Q \times \Sigma \rightarrow Q$
Example: DFA that accepts even binary numbers.

Transition Diagram:

\[M = (Q, \Sigma, \delta, q_0, F) = \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of a move: \(\delta(q_0, 1) = \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q,s)
 s = next symbol to the right on tape
if q∈F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1)

```
1 0 0
q0
q1
```

2)

```
1 0 0
q0
q1
```

3)

```
1 0 0
q0
q1
```

4)

```
1 0 0
q0
q1
```
Definition:
\[
\delta^*(q, \lambda) = q \\
\delta^*(q, wa) = \delta(\delta^*(q, w), a)
\]

Definition The language accepted by a DFA $M=(Q, \Sigma, \delta, q_0, F)$ is set of all strings on Σ accepted by M. Formally, $L(M) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \in F\}$
Trap State

Example: $L(M) =$
Example:

\[L = \{ w \in \Sigma^* \mid w \text{ has an even number of } a\text{'s and an even number of } b\text{'s} \} \]
Example: DFA that accepts even binary numbers that have an even number of 1’s.
Definition A language is regular iff there exists DFA M s.t. $L = L(M)$.
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition
An NFA=\((Q,\Sigma,\delta,q_0,F)\)

where
- \(Q\) is finite set of states
- \(\Sigma\) is tape (input) alphabet
- \(q_0\) is initial state
- \(F \subseteq Q\) is set of final states.
- \(\delta:Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q\)
Example

Note: In this example $\delta(q_0, a) =$

$L=$
Example

\[L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\} \]
Definition $q_j \in \delta^*(q_i, w)$ if and only if there is a walk from q_i to q_j labeled w.

Example From previous example:

\[
\delta^*(q_0, ab) = \]
\[
\delta^*(q_0, aba) = \]

Definition: For an NFA M,
$L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \}$
2.3 NFA vs. DFA: Which is more powerful?

Example:
Theorem Given an NFA $M_N=(Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D=(Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

$Q_D =$

$F_D =$

$\delta_D :$
Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge
 (a) Choose a state $A=\{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$
 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 (c) Add state B if it doesn’t exist
 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Example:
Properties and Proving - Problem 1

Consider the property

Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).

Example 1: Consider L = \{aaab, bbaa\}

R1awb(L) =

Example 2: Consider \(\Sigma = \{a, b\}\), L = \(\{w \in \Sigma^* \mid w\) has an even number of a’s and an even number of b’s\}

R1awb(L) =

Proof:
Properties and Proving - Problem 2

Consider the property
Truncate_all_preceeding_b’s or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).

Example 1: Consider $L = \{aaab, bbba\}$

$\text{TruncPreb}(L) =$

Example 2: Consider $L = \{(bba)^n \mid n > 0\}$

$\text{TruncPreb}(L) =$

Proof:
Minimizing Number of states in DFA

Why?

Algorithm

• Identify states that are indistinguishable

These states form a new state

Definition Two states p and q are indistinguishable if for all \(w \in \Sigma^* \)

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
\]

Definition Two states p and q are distinguishable if \(\exists \ w \in \Sigma^* \) s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \ \text{OR} \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example: