Regular Expressions

Method to represent strings in a language

+ union (or)
⊙ concatenation (AND) (can omit)
* star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^*\]

Example:

\[(aa)^*\]

Definition Given \(\Sigma\),

1. \(\emptyset, \lambda, a \in \Sigma\) are R.E.
2. If \(r\) and \(s\) are R.E. then

 - \(r + s\) is R.E.
 - \(rs\) is R.E.
 - \((r)\) is a R.E.
 - \(r^*\) is R.E.
3. \(r\) is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: \(L(r) =\) language denoted by R.E. \(r\).

1. \(\emptyset, \{\lambda\}, \{a\}\) are L denoted by a R.E.
2. If \(r\) and \(s\) are R.E. then

 (a) \(L(r + s) = L(r) \cup L(s)\)
 (b) \(L(rs) = L(r) \circ L(s)\)
 (c) \(L((r)) = L(r)\)
 (d) \(L((r)^*) = (L(r)^*)\)

Precedence Rules

\[\star \text{ highest} \]
\[\circ \]
\[+\]

Example:

\[ab^* + c =\]
Examples:

1. \(\Sigma = \{a, b\}, \{w \in \Sigma^* | \text{w has an odd number of a's followed by an even number of b's}\} \).

2. \(\Sigma = \{a, b\}, \{w \in \Sigma^* | \text{w has no more than 3 a's and must end in ab}\} \).

3. Regular expression for all integers (including negative)

Section 3.2 Equivalence of DFA and R.E.

Theorem Let \(r \) be a R.E. Then \(\exists \) NFA \(M \) s.t. \(L(M) = L(r) \).

- Proof:
 \(\emptyset \)
 \(\{\lambda\} \)
 \(\{a\} \)

Suppose \(r \) and \(s \) are R.E.

1. \(r+s \)
2. \(r \circ s \)
3. \(r^* \)

Example

\(ab^* + c \)

Theorem Let \(L \) be regular. Then \(\exists \) R.E. \(r \) s.t. \(L=L(r) \).

Proof Idea: remove states successively, generating equivalent generalized transition graphs (GTG) until only two states are left (one initial state and one final state).

- Proof:
 \(L \) is regular
 \(\Rightarrow \exists \)
 1. Assume \(M \) has one final state and \(q_0 \notin F \)
 2. Convert to a generalized transition graph (GTG), all possible edges are present.
 If no edge, label with
 Let \(r_{ij} \) stand for label of the edge from \(q_i \) to \(q_j \)
 3. If the GTG has only two states, then it has the following form:
 In this case the regular expression is:
 \[r = (r_{ii}^* r_{ij} r_{jj}^*) r_{ii}^* r_{ij} r_{jj}^* \]
 4. If the GTG has three states then it must have the following form:
In this case, make the following replacements:

<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}^*r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^*r_{ki}$</td>
</tr>
</tbody>
</table>

After these replacements, remove state q_k and its edges.

5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule

r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$

with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.

6. In each step, simplify the regular expressions r and s with:
\[r + r = r \]
\[s + r^* s = \]
\[r \emptyset = \]
\[\emptyset r = \]
\[r^* = \]
\[(\lambda + r)^* = \]
\[(\lambda + r)r^* = \]

and similar rules.

Example:

Section 3.3

Grammar \(G = (V, T, S, P) \)

- \(V \) variables (nonterminals)
- \(T \) terminals
- \(S \) start symbol
- \(P \) productions

Right-linear grammar:

all productions of form
\[A \rightarrow xB \]
\[A \rightarrow x \]
where \(A, B \in V, x \in T^* \)

Left-linear grammar:

all productions of form
\[A \rightarrow Bx \]
\[A \rightarrow x \]
where \(A, B \in V, x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[
G=\langle \{S\}, \{a,b\}, S, P \rangle, \;
P= \\
S \to abS \\
S \to \lambda \\
S \to Sab
\]

Example 2:

\[
G=\langle \{S,B\}, \{a,b\}, S, P \rangle, \;
P= \\
S \to aB \mid bS \mid \lambda \\
B \to aS \mid bB
\]

Theorem: L is a regular language if and only if there exists a regular grammar G such that \(L = L(G)\).

Outline of proof:

\((\Longleftarrow)\) Given a regular grammar G
Construct NFA M
Show \(L(G) = L(M)\)

\((\Longrightarrow)\) Given a regular language
\(\exists\) DFA M such that \(L = L(M)\)
Construct regular grammar G
Show \(L(G) = L(M)\)

Proof of Theorem:

\((\Longleftarrow)\) Given a regular grammar G
\(G=\langle V, T, S, P \rangle\)
\(V = \{V_0, V_1, \ldots, V_y\}\)
\(T = \{v_0, v_1, \ldots, v_z\}\)
\(S = V_0\)

Assume G is right-linear
(see book for left-linear case).
Construct NFA M such that \(L(G) = L(M)\)
If \(w \in L(G)\), \(w = v_1 v_2 \ldots v_k\)

\[
M=\langle V \cup \{V_f\}, T, \delta, V_0, \{V_f\} \rangle
\]

\(V_0\) is the start (initial) state
For each production, \(V_i \to aV_j\),
For each production, $V_i \rightarrow a$, show $L(G) = L(M)$

Thus, given R.G. G,

$L(G)$ is regular

((\Rightarrow) Given a regular language L

\exists DFA M s.t. $L = L(M)$

$M = (Q, \Sigma, \delta, q_0, F)$

$Q = \{q_0, q_1, \ldots, q_n\}$

$\Sigma = \{a_1, a_2, \ldots, a_m\}$

Construct R.G. G s.t. $L(G) = L(M)$

$G = (Q, \Sigma, q_0, P)$

if $\delta(q_i, a_j) = q_k$ then

if $q_k \in F$ then

Show $w \in L(M) \iff w \in L(G)$

Thus, $L(G) = L(M)$.

QED.

Example

$G = (\{S, B\}, \{a, b\}, S, P)$, $P =$

$S \rightarrow aB \mid bS \mid \lambda$

$B \rightarrow aS \mid bB$

Example:

[Diagram of a simple DFA with states q0 and q1, transitions labeled with a and b]