Example

For an uninformed strategy, N_1 and N_2 are just two nodes (at some position in the search tree)
Example

For a heuristic strategy counting the number of misplaced tiles, N_2 is more promising than N_1.

Heuristc Function

- The heuristic function $h(N) \geq 0$ estimates the cost to go from $STATE(N)$ to a goal state.

 Value is independent of the current search tree; it depends only on $STATE(N)$ and the goal test GOAL.

- Example:

 $$
 \begin{array}{ccc}
 5 & 8 & \text{STATE(N)} \\
 4 & 2 & 1 \\
 7 & 3 & 6 \\
 \end{array} \quad \begin{array}{ccc}
 1 & 2 & 3 \\
 4 & 5 & 6 \\
 7 & 8 & \text{Goal state} \\
 \end{array}
 $$

- $h(N) = \text{number of misplaced numbered tiles} = 6$

- [Why is it an estimate of the distance to the goal?]
Informed/Heuristic Search

- Idea: Give the search algorithm hints
- Heuristic function: \(h(x) \)
- \(h(x) = \text{estimate of cost to goal from } x \)
- If \(h(x) \) is 100% accurate, then we can find the goal in \(O(bd) \) time

\[
h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2} \quad \text{(L}_2\text{ or Euclidean distance)}
\]

\[
h_2(N) = |x_N - x_g| + |y_N - y_g| \quad \text{(L}_1\text{ or Manhattan distance)}
\]
Greedy Best First Search

- Expand node with lowest $h(x)$
- (Implement priority queue on h)
- Optimal if $h(x)$ is 100% correct
- How can we get into trouble with this?

What Price Greed?

What’s broken with greedy search?
Best-First ≠ Efficiency

Local-minimum problem

\[f(N) = h(N) = \text{straight distance to the goal} \]

A*

- Path cost so far: \(g(x) \)
- Total cost estimate: \(f(x) = g(x) + h(x) \)
- Maintain frontier as a *priority queue* (on \(f \))
- \(O(bd) \) time if \(h \) is 100% accurate
- We want \(h \) to be an *admissible* heuristic
- Admissible: never overestimates cost
- Why admissible?
 (guarantees optimality, completeness of \(A^* \)!)
8-Puzzle Heuristics

- **h₁(N)** = number of misplaced tiles = 6

<table>
<thead>
<tr>
<th>STATE(N)</th>
<th>Goal state</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 8</td>
<td>1 2 3</td>
</tr>
<tr>
<td>4 2 1</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 6</td>
<td>7 8</td>
</tr>
</tbody>
</table>

Robot Navigation Heuristics

- Cost of one horizontal/vertical step = 1
- Cost of one diagonal step = \(\sqrt{2} \)

\[
h₁(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}
\]
Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = $\sqrt{2}$

$h_2(N) = |x_N - x_d| + |y_N - y_d|$ is ???

Robot Navigation
Robot Navigation

\[f(N) = h(N), \text{ with } h(N) = \text{Manhattan distance to the goal} \]
(greedy, not A*)
Robot Navigation

\[f(N) = g(N) + h(N), \text{ with } h(N) = \text{Manhattan distance to goal (A*)} \]

<table>
<thead>
<tr>
<th></th>
<th>8+3</th>
<th>7+4</th>
<th>6+3</th>
<th>5+6</th>
<th>4+7</th>
<th>3+8</th>
<th>2+9</th>
<th>3+10</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7+2</td>
<td>5+6</td>
<td>4+7</td>
<td>3+8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6+1</td>
<td></td>
<td>3</td>
<td>2+9</td>
<td>1+100+11</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7+0</td>
<td>6+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>8+1</td>
<td>7+2</td>
<td>6+3</td>
<td>5+4</td>
<td>4+5</td>
<td>3+6</td>
<td>2+7</td>
<td>3+8</td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Some A* Properties

- Admissibility implies \(h(x) = 0 \) if \(x \) is a goal state
- Above implies \(f(x) = \text{cost to goal} \) if \(x \) is a goal state and \(x \) is popped off the queue
- What if \(h(x) = 0 \) for all \(x \)?
 - Is this admissible?
 - What does the algorithm do?
Result #1

A* is complete and optimal

[This result holds if nodes revisiting states are not discarded – otherwise you might find a shortcut and then discard it.]

Proof (1/2)

• If a solution exists, A* terminates and returns a solution

- For each node N on the frontier,
 $f(N) = g(N) + h(N) \geq g(N) \geq d(N) \times \epsilon$,
 where $d(N)$ is the depth of N in the tree
Proof (1/2)

• If a solution exists, A* terminates and returns a solution

- For each node N on the frontier,
 \[f(N) = g(N) + h(N) \geq g(N) \geq d(N) \times \epsilon, \]
 where \(d(N) \) is the depth of N in the tree

- As long as A* hasn’t terminated, a node K on the frontier lies on a solution path

- Since each node expansion increases the length of one path, K will eventually be selected for expansion, unless a solution is found along another path
Proof (2/2)

- Whenever A* pops a goal node, the path to this node is optimal

 - C^* = cost of the optimal solution path
 - G': non-optimal goal node in the frontier
 - $f(G') = g(G') + h(G') = c(G') > C^*$
 - A node K in the frontier lies on an optimal path:
 - $f(K) = g(K) + h(K) \leq C^*$
 - So, G' will not be selected for expansion

What to do with revisited states?

The heuristic h is clearly admissible
What to do with revisited states?

If we discard this new node, then the search algorithm expands the goal node next and returns a non-optimal solution.

- Not harmful to discard a node revisiting a state if cost of the new path state is ≥ cost of previous path [so, in particular, one can discard a node if it re-visits a state already visited by one of its ancestors – compare w/DFS]

- If A* pushes revisited states, it remains optimal, but states may be re-visited multiple times [the size of the search tree can be exponential in number of visited states]

- Fortunately, for a large family of admissible heuristics – consistent heuristics – there is a much more efficient way to handle revisited states
Consistent Heuristic

- An admissible heuristic h is consistent (or monotone) if for each node N and each child N' of N: $h(N) \leq c(N,N') + h(N')$

Intuition: a consistent heuristic becomes more precise as we get deeper in the search tree.

Consistency Violation

If h tells us that N is 100 units from the goal, then moving from N along an arc costing 10 units should not lead to a node N' that h estimates to be 10 units away from the goal.
Consistent Heuristic (alternative definition)

- A heuristic \(h \) is **consistent** (or monotone) if
 1. for each node \(N \) and each child \(N' \) of \(N \):
 \[h(N) \leq c(N,N') + h(N') \]
 2. for each goal node \(G \):
 \[h(G) = 0 \]

Admissibility and Consistency

- Any consistent heuristic is also admissible

- An admissible heuristic may not be consistent, but many admissible heuristics are
8-Puzzle

- $h_1(N) = \text{number of misplaced tiles}$
- $h_2(N) = \text{sum of the (Manhattan) distances of every tile to its goal position}$

are both consistent (why?)

Reasoning About Consistency

- Example: Manhattan Distance in 8-puzzle
 - $MD(N,G) \leq MD(N,N') + MD(N',G)$
 - $h(N) = MD(N,G)$
 - $h(N') = MD(N',G)$
 - $h(N) \leq MD(N,N')+h(N')$
 - $C(N,N') \geq MD(N,N')$
 - $h(N) \leq C(N,N')+h(N')$

- Note: Not just showing that h obeys triangle inequality between pairs of states
Robot Navigation

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = $\sqrt{2}$

$h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$ is consistent
$h_2(N) = |x_N - x_g| + |y_N - y_g|$ is consistent if moving along diagonals is not allowed, and not consistent otherwise

Result #2

- If h is consistent, then whenever A* expands a node, it has already found an optimal path to this node’s state
Proof (1/2)

1. Consider a node N and its child N'
 Since h is consistent: \(h(N) \leq c(N,N') + h(N') \)

 \[
 f(N) = g(N) + h(N) \leq g(N) + c(N,N') + h(N') = f(N')
 \]
 So, f is non-decreasing along any path

Proof (2/2)

2. If a node K is selected for expansion, then any other node N in the frontier has \(f(N) \geq f(K) \)

 • If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K:
 \[
 f(N') \geq f(N) \geq f(K) \quad \text{and} \quad h(N') = h(K)
 \]
 So, \(g(N') \geq g(K) \)
2. If a node K is selected for expansion, then any other node N in the fringe verifies $f(N) \geq f(K)$. If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K: $f(N') \geq f(N) \geq f(K)$ and $h(N') = h(K)$. So, $g(N') \geq g(K)$.

Result #2
If h is consistent, then whenever A* expands a node, it has already found an optimal path to this node’s state.

Implication of Result #2
The path to N is the optimal path to S. N_2 can be discarded.
Revisited States with Consistent Heuristic (Modified Search Algorithm #3)

- When a node is expanded, store its state into VISITED
- When a new node \(N' \) is generated:
 - If \(\text{STATE}(N') \) is in VISITED, discard \(N' \)
 - If there exists a node \(N'' \) in the frontier such that \(\text{STATE}(N'') = \text{STATE}(N') \), discard the node – \(N' \) or \(N'' \)
 - with the largest \(f \) (or, equivalently, \(g \))

Not as important – can safely ignore these checks and just push onto the queue – Why?

Heuristic Accuracy

- Let \(h_1 \) and \(h_2 \) be two consistent heuristics such that for all nodes \(N \):
 \[h_1(N) \leq h_2(N) \]
- \(h_2 \) is said to be more accurate (or more informed) than \(h_1 \)

\[\begin{array}{ccc} 5 & 8 & 4 \ 2 & 1 \ \ 7 & 3 & 6 \ \end{array} \]
\[\begin{array}{ccc} 1 & 2 & 3 \ \ 4 & 5 & 6 \ \ 7 & 8 \ \end{array} \]

- \(h_1(N) \) = number of misplaced tiles
- \(h_2(N) \) = sum of distances of every tile to its goal position
- \(h_2 \) is more accurate than \(h_1 \)
Result #3

- Let h_2 be more accurate than h_1
- Let A_1^* be A^* using h_1
 and A_2^* be A^* using h_2
- Whenever a solution exists, all the nodes expanded by A_2^*, except possibly for some nodes such that

 $f_1(N) = f_2(N) = C^*$ (cost of optimal solution)

 are also expanded by A_1^*

Proof

- C^* = cost of optimal solution

- Every node N such that $f(N) < C^*$ is eventually expanded. No node N such that $f(N) > C^*$ is ever expanded

- Every node N such that $h(N) < C^* - g(N)$ is eventually expanded. So, every node N such that $h_1(N) < C^* - g(N)$ is expanded by A_2^*. Since $h_1(N) \leq h_2(N)$, N is also expanded by A_1^*

- If there are several nodes N such that $f_1(N) = f_2(N) = C^*$ (such nodes include the optimal goal nodes, if there exists a solution), A_1^* and A_2^* may or may not expand them in the same order (until one goal node is expanded)
How to create good heuristics?

• By solving relaxed problems at each node
• In the 8-puzzle, the sum of the distances of each tile to its goal position (h_2) corresponds to solving 8 simple problems:

$$h_2(N) = \sum_{i=1}^{8} d_i(N)$$

- It ignores negative interactions among tiles

Can we do better?

• For example, we could consider two more complex relaxed problems:

$$d_{1234} = \text{length of the shortest path to move tiles 1, 2, 3, and 4 to their goal positions, ignoring the other tiles}$$

$$d_{5678}$$

- $h = d_{1234} + d_{5678}$ [disjoint pattern heuristic]
• How to compute d_{1234} and d_{5678}?
Can we do better?

• For example, we could consider two more complex relaxed problems:

\[d_{1234} = \text{length of the shortest path to move tiles 1, 2, 3, and 4 to their goal positions, ignoring the other tiles} \]

\[h = d_{1234} + d_{5678} \] [disjoint pattern heuristic]

• These distances are pre-computed and stored
 [Each requires generating a tree of 3,024 nodes/states (breadth-first search)]

→ Several order-of-magnitude speedups for the 15- and 24-puzzle (see R&N)

Effective Branching Factor

• Used as measure the effectiveness of \(h \)

• Let \(n \) be the total number of nodes expanded by A* for a particular problem and \(d \) the depth of the solution

• The effective branching factor \(b^* \) is defined by fitting: \(n = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d \)
Experimental Results
(see R&N for details)

- 8-puzzle with:
 - $h_1 =$ number of misplaced tiles
 - $h_2 =$ sum of distances of tiles to their goal positions
- Random generation of many problem instances
- Average effective branching factors (number of expanded nodes):

<table>
<thead>
<tr>
<th>d</th>
<th>IDDFS</th>
<th>A_1^*</th>
<th>A_2^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>6</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>12</td>
<td>2.78 (3,644,035)</td>
<td>1.42 (227)</td>
<td>1.24 (73)</td>
</tr>
<tr>
<td>16</td>
<td>--</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>20</td>
<td>--</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>24</td>
<td>--</td>
<td>1.48 (39,135)</td>
<td>1.26 (1,641)</td>
</tr>
</tbody>
</table>

Memory-bounded Search: Why?

- We run out of memory before we run out of time
- Problem: Need to remember entire search horizon
- Solution: Remember only a partial search horizon

- Issue: Maintaining optimality, completeness
- Issue: How to minimize time penalty
- Details: Not emphasized in class, but worth a skim so that you are aware of the issues
Iterative Deepening A* (IDA*)

- Idea: Reduce memory requirement of A* by applying cutoff on values of f
- Consistent heuristic function h
- Algorithm IDA*:
 - Initialize cutoff to f(initial-node)
 - Repeat:
 - Perform cost-limited search by expanding all nodes N such that f(N) ≤ cutoff
 - Reset cutoff to smallest value f of non-expanded (leaf) nodes

Advantages/Drawbacks of IDA*

- Advantages:
 - Still complete and optimal
 - Requires less memory than A*
 - Avoids the overhead to sort the frontier (priority queue)
- Drawbacks:
 - Discards a lot of information when it restarts
 - Available memory is poorly used
 - IDDFS expands factor of b more nodes at each iteration; not guaranteed here

Cutoff = 3

- h=1
- h=1
- h=1

- h=2
- h=1
RBFS

• Recursive best first search
• Objective: Linear space without discarding as much information as IDA*

• Idea: Remember best alternative
• Rewind, try alternatives if “best first” path gets too expensive
• Remember costs on the way back up

Assume $h=1$, initially along this path.

Replace with $f = 11$

Return to best alternative

Problem: Thrashing!
SMA*

- Idea: Use all of available memory
- Discard the *worst* leaf when memory starts to run out, to make room for new leaves
- Values get backed up to parents
- Optimal if solution fits in memory
- Complete
- Thrashing still possible

Recap

- Heuristics change how we think about search
- A* is optimal, complete
- Dramatic improvements in efficiency possible with good heuristics

- Many extensions possible, e.g., dealing with limited memory